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ABSTRACT

The objective of this research was to develop
unified constitutive equation which can model a variety
of nonlinear material phenomena observed in Rene” 80
between 538 °C and 982°C.

Five unified constitutive models were reviewed in
detail to evaluate their capabilities and limitations.
Two models, a generic back stress drag stress model and
the Bodner model, were then used to model the behavior
of Rene” 80 at 982°C. Both models were found to have
some advantageous features, however, neither proved
adequate for Rene” 80-

A new constitutive model was proposed based on
back stress and drag stress. The tensorial back stress
was used to model directional effects; whereas, the
scalar drag stress was used to model isotropic effects
and cyclic hardening or softening. A flow equation and
evolution equations for the state wvariables were
developed in multiaxial form. Procedures were
developed to generate the material parameters. The
model predicted very well the monotonic tensile,
cyclic, creep and stress relaxation behavior of Rene”
80 at 982°C.

The model was then extended to 871°C, 760°C, and

538°C. It was shown that strain rate dependent
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behavior at high temperatures, and strain rate
independent behavior at the lower temperatures could be
predicted very well. A large number of monotonic
tensile, creep, stress relaxation and cyclic
experiments were predicted.

The multiaxial capabilities of the model were verified
extensively for combined tension/torsion experiments.
The prediction of the model agreed very well for
proportional, nonproportional and pure shear cyclic
loading conditions at 982°C and 871°C. It was shown
that the proposed back stress model predicts a phase
angle between the inelastic strain rate and deviatoric
stress vectors. Some possible extensions of the model

in future research were identified.
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CHAPTER 1
INTRODUCTION

During the past fifteen years there have been
significant advances in improving the fuel efficiency
of gas turbine engines. An improvement in performance
is usually associated with an increase in the operating
temperatures of the engine components and/or a
reduction 1in their weight. Development of high
temperature superalloy materials has indeed been a
major factor in accomplishing the conflicting goals of
higher thrust and lower weight for engines.

One of the major tasks before turbine design
engineers is the assurance of the structural durability
of the various components designed. This s a
challenging problem, especially in the <case of
components operating 1in a severe environment and
complex loading conditions. For example, critical jet
engine components such as turbine disks, blades and
vanes are subjected to very high cyclic stresses and
temperatures, which vary throughout the flight mission.
Structural integrity and durability of these components
must, however, be ensured. Analytical methods are
extensively used in this process of 1life analysis of

the engine components. Experimental verification using



component testing, which is very expensive, is
performed for critical Tlocations. To determine the
1ife of a component, three types of analyses must be
performed: (1) Structural analysis, (2) Thermal
analysis and (3) Damage analysis. While all three are
jmportant, the primary focus in this report is on
structural analysis methods.

There have been significant advances in the past
in the areas of stress and thermal analysis techniques.
Modern computers have dramatically improved our ability
to perform stress analyses for complicated geometries.
The Finite Element Method is the prime example. These
methods have a high degree of accuracy if the stresses
and temperatures are such that inelastic strains are
negligibly small. However, they have not been as
successful in analysing high temperature material
behavior involving significant inelastic strains. The
main reason for this is the deficiency in the
mechanical constitutive equations that are used to
model the material behavior. At high temperatures
materials display a number of response characteristics,
some of which are not observed at lower temperatures.
Typical examples are strain rate dependence, creep,
anelasticity, and cyclic hardening or softening. The

classical plasticity and creep models that are




incorporated in most of the finite element codes used
today are inadequate to model high temperature response
of materials [1,2].

Development of more realistic constitutive models
for high temperature superalloys has become necessary.
Since the constitutive models are being evaluated for
use in the gas turbine dindustry, several specific
properties have been established that are necessary for
high temperature superalloys. These models must: (1)
have the ability to accurately predict the monotonic
and cyclic response including strain and cyclic
hardening or softening wunder multiaxial loading
conditions; (2) be applicable over the temperature
range occurring in gas turbines; (3) be practical for
use in nonlinear finite element computer codes; and (4)
be easily relatable to observed material response to
determine the required material parameters.

Classical attempts at constitutive modeling are
based on separating the strain into separate components
to model the creep and plasticity. This approach,
although computationally desirable, does not wusually
include an adequate method to model the <coupling
between creep and plasticity. More recently, several
"unified™ constitutive formulations have been proposed

based on a single inelastic strain component to model



both creep and plasticity [14,17,19,24,251. The models
have shown encouraging results in modeling constitutive
behavior at high temperatures. Some areas of
difficulty have also become apparent [15,26].

In view of the many advantages, a research program
has been carried out to investigate the existing models
and develop a new unified constitutive equation. The
research was primarily directed toward modeling the
response of Rene” 80 from 500°C to 1100°. Support for
the project was provided by NASA Lewis Research Center,
Cleveland, Ohio. It is anticipated that the results
will be incorporated into a finite element code,
although this is not part of the present study. The
work was directed toward three specific goals.

The first was to study the typical response of
unified constitutive models. This work included a
review of the literature, programming five models and
evaluating their response using material data published
jn the literature. The two models that appeared most
promising for high temperature superalloys were
selected for further study. The material constants for
each model were determined for Rene” 80 at 982°C and
the calculated response was compared to the
experimental data. An evaluation of the models

followed this exercise.




Secondly, a new unified constitutive model was
developed using the above results. The model
development was influenced by the observed deformation
mechanisms present 1in Rene” 80 between 500°C and
1100°C. The model is fully three dimensional, but the
development was based on uniaxial response.
Experimental and calculated results were compared for
monotonic, creep and cyclic load histories at 538°C,
760°C, 871°C, and 982°C.

The third goal was the extension of the model to
multiaxial loading histories. Even though the model is
three dimensional, the multiaxial hardening aspects had
to be <considered. The response capabilities for
proportional and nonproportional 1loading paths were

compared to observed response.



CHAPTER 2
TYPICAL RESPONSE OF UNIFIED CONSTITUTIVE MODELS

Unified constitutive theories of material behavior
have been under development for more than ten years.
Although significant progress has been achieved, they
have not yet fully developed to the extent that they
can be used by design engineers. Several different
unified models are available in the 1literature, and
modifications are still in progress. In the mean time,
classical theories of plasticity and creep are being
widely wused 1in inelastic analyses. In order to
understand the special capabilities of the wunified
constitutive models and their advantages and
disadvantages, it 1is helpful to review briefly the
structure of the classical theories of plasticity and
creep. The general structure of unified constitutive
theories will be discussed next, noting the
similarities and differences with the classical
approach. This will be followed by a detailed
investigation of the capabilities and limitations of a
few of the unified constitutive models that have been

used for high temperature superalloys.




2.

1

Classical Theories of Plasticity and Creep

In the classical approach, the total strain (e..)

1]
is considered to be decomposed into an elastic strain
. .© i i . .P i c
(813 ), a plastic strain (e1J ), a creep strain (eij )
and a thermal strain (eijT); that is,
= e P C T
€ €55 + € + €5 3 + €5 (2.1)

The elastic strain is reversible upon removal of the
applied 1load. For small strain it 1is described by
Hooke's Law,
e_(lty -
€57 (7D 9550 F %Sy (2.2)
where E is the elastic modulus and y is the Poisson

ratio. Implied summation of the indices is always used

in this report. The thermal strain arises due to
thermal expansion of the material, eijT = Al Gij’
where AT is the temperature difference from a

reference temperature and a is the thermal expansion
coefficient. The plastic strain, Gijp’ cannot be
recovered upon removal of the 1load. In the classical

theory of plasticity, the plastic strain eijp is
dependent on the history of loading but is considered
time independent. Time dependency is introduced using
the creep strain e;5C, which also accounts for the
stress relaxation and strain recovery properties of the

material.




2.1.1 Mathematical Theories of Classical Plasticity

The classical theory of plasticity is fundament-
ally based upon the concept of a yield surface in the
stress space. It is assumed that a yield function
exists which delineates the elastic and plastic regime
of material behavior. The yield function depends on
the state of stress, temperature and previous stress
history. For example, plastic strain 1is typically
defined to occur if

£(0,5) 2 9(T.K) (2.3)
where g is a scalar function of temperature and strain
hardening, the latter characterized by the parameter K.
The yield surface f(oij) is generally written as a
function of the second invariant of the deviatoric
stress tensor, J2, since yield and plastic flow are
independent of hydrostatic stress [3,4]. Two of the
most widely used criteria were proposed by Von Mises,

f( ) = Jy,and Tresca, f = 0; - O3, where 0; and 0Oq

o, .
1)
are the maximum and minimum principal stresses.

In addition to the yield surface the <classical
approach also requires the use of a plastic flow law.
Some of the early work in plasticity theory was for the
jdeally plastic materials and for elastic perfectly

plastic materials. However, most metals show consider-




able amount of work hardening. The concept of work
hardening can be mathematically stated using the fol-
lowing inequalities proposed by Drucker, [5,6,7]:
(a) d°ij deij > 0 upon loading (2.4)
(b) doyj deijp > 0 for a cycle of loading (2.5)
and unloading.
The first inequality requires the total work to be
positive during the application of a stress increment,
and the second states that the net plastic work
performed over a stress application and removal cycle
is positive or zero.

Two important results arise from these
inequalities. First, Drucker showed that the initial
yield surface and all subsequent yield surfaces must be
convex. The second is that for a smooth yield surface

the plastic strain increment vector must be normal to

the yield surface; i.e.,

de.P=dy —2f

€: (2.6)
13 301:]

where the scalar function A may depend on stress, tem-
perature and the loading history.

Equation (2.6) is the Flow Rule, which relates the
increment of plastic strain to an increment of stress.

If the Von Mises yield function, f(oij) = Jg, is used




in Equation (2.6), the Prandtl Reuss flow law results,

deijp =dx s, .. (2.7)
Equation (2.6) enables the calculation of the plastic
strain increments at any particular point during the
loading history for any yield function f(oij). How-
ever, it is still necessary to describe the work hard-
ening.

A major part of the current mathematical theories
of plasticity 1is the development of hardening rules.
These rules describe how work hardening during plastic
deformation affects subsequent yield surfaces and flow
characteristics. The question of what is an
appropriate hardening rule for many materials has never
been answered completely. However, the isotropic and
kinematic hardening rules have evolved as important
contributions.

The isotropic hardening rule 1is based on the
assumption that, during plastic deformation, the yield
surface maintains 1its shape but the size increases.
Usually the increase in size is controlled by a single
scalar parameter that depends on the accumulated
plastic strain or accumulated plastic work. Isotropic
hardening 1is not always a good assumption since some
materials develop anisotropic and Bauschinger effects
that significantly change the size, shape and origin of

the yield surface.

10




Kinematic hardening is based on the concept that
during plastic deformation the yield surface does not
change its size or shape, but translates in the stress
space. Various versions of this rule have been pro-
posed to describe how this translation occurs. Prager
[8,9] proposed that the translation occurs in the
direction of the normal to the yield surface. Ziegler
[10] modified this rule for use with a yield surface
with corners where the normal is not defined. Mroz
[11] bounded the translation, size and shape with a
limit surface.

In general, kinematic hardening or a combination
of kinematic and isotropic hardening 1is a Dbetter
assumption than the isotropic hardening alone in
representing material behavior. However, in addition
to expansion and translation, in multiaxial loading the
yield surface may distort during plastic deformation
[12,13) . Additional hardening may be present in the
case of nonproportional 1loading histories. These
enormously complicate the yield surface based plasti-

city theories.

Classical Approach to Creep

The creep strain, eijc’ in Equation 2.1 has tradi-

tionally been calculated in a manner similar to the

11




plastic strain [55). The creep strain at any time t is
based on an empirical relation in the form
€ = f(0c,t,T). (2.8)

The creep test results are wusually wuniaxial and at
constant stress Oc and temperature T. In variable
loading time hardening or strain hardening assumptions
are frequently used. Time hardening is based on the
assumption that creep rate depends on the time at a
stress and temperature and independent of the current

stress and thermal rates; i.e.,

e 3f » . f. . Of _ of

" v %t I . (2.9)
The creep rate is defined to depend on strain rather
than time 1in the strain hardening rule. Solving
Equation 2.8 for time and combining with Equation 2.9

gives

€.=9(0.. T, €). (2.10)

The total strain is estimated by integrating Equation
2.9 or 2.10 with stress and temperature as functions of
time. This can only be a reasonable approximation for
some very limited cases, yet it is used widely. A flow
law similar to the Prandtl Reuss equation is assumed

for multiaxial 1loading. The development is based on

12




2.2

purely phenomenological arguments and 1is similar to

plasticity.

Unified State Variable Constitutive Theories

Recall that <classical plasticity theory 1is rate
independent and time dependence is introduced through
empirically developed creep models. The two terms,
creep and plasticity, are independent and there is no
influence of plasticity on creep or creep on
plasticity. Yet these effects are present in material
response. It is very important that constitutive models
have coupling between the creep and plasticity terms.
This has proven extremely difficult using separate
creep and plastic strain components. Thus, in the
unified theories, the classical separation of strain
jnto a time independent plastic strain and a time
dependent creep strain is replaced by a total inelastic
strain. In many recent theories the inelastic strain is
assumed to occur even at stresses below the yield
stress, is rate dependent and generally does not employ
a yield surface. The total strain is written as the sum
of a reversible elastic strain e.je, a nonreversible

1

inelastic strain eijl and a thermal strain eijT; i.e.,

€.. = €.:€ + g..1 + €1 (2.11)




2.3

A number of unified state variable constitutive
models are available in the 1literature which have been
developed for specific materials or classes of
materials [14,15). None of these models appear to have
been fully developed to the extent that they can
represent all aspects of material behavior; yet, there
appears to be a significant improvement over the
classical theory. There are also varying degrees of
difficulty involved in the numerical implementation of
these models. It appears helpful in the development of
a new model to review these models individually and
evaluate their capabilities and limitations in terms of
accuracy of modeling material behavior, material
parameter evaluation and numerical implementation. The
specific material behaviors evaluated are strain rate
sensitivity, creep, stress relaxation, cyclic hardening
or softening and anelasticity. These properties are

important in high temperature superalloys.

Response Characteristics of Some Unified Models

2.3.1 Walker Model

The viscoplasticity effects are modeled using two

types of internal variables, an equilibrium stress,

14



Qij, and a drag stress, K [14,16]. The equilibrium
stress (back stress) is wused to model kinematic
hardening and Bauschinger effects in cyclic 1loading.
The drag stress K models isotropic hardening and cyclic
hardening or softening effects. The Walker model can

be summarized as follows:

35,0,
S..=0..
;?J.{L]n [’Z_wﬁ_ (2.12)

i K X ]
_ {213 3
where X= /?[?Sij“’ij][isij“’i]
I 32_' o° ~ 1 32
'("1 "2)€1J €ij T T- (QlJ ij n1513)( F T)
(2.13)
-n7R

K=K1-K2e (2.14)

m-1

. -N R 3 T‘
G=(n3+n4e 5 )R+"6(§91j91j) (2.15)

. OI
/% €i§€5; . (2.16)

R is an effective inelastic strain rate. n; (i=1,7),
Ki (i=1,2) and m are material parameters. The drag
stress is a function of the accumulated inelastic
strain and the back stress evolution equation has both

static and dynamic recovery terms. A summary of the

15




equations in the uniaxial form and the constants for
the Hastelloy-X are given in Appendix A.

In order to study the basic capabilities of this
model, a computer program was developed for integrating
equations (2.12-2.16). The material parameters were
taken from Reference [l4] for Hastelloy-X at 649°C. A
number of uniaxial loading histories were imposed to
study the strain rate sensitivity, creep, stress relax-
ation, and cyclic effects of the model. On monotonic
loading the model showed sensitivity to the applied
strain rate. Such strain rate sensitivity is a basic
property of all the unified models. Another basic
capability 1is creep and stress relaxation modeling.
This stress relaxation was verified as shown in Figure
2.1. The response is similar to that seen in stress
relaxation tests. Another major capability required of
any model is the cyclic history dependence. A number
of cycles were imposed at a constant strain rate but
with increasing amplitude such that the stresses are
elastic during the initial cycles, see Figure 2.2. The
predicted hysteresis loops shown in Figure 2.3 are in
qualitative agreement with normally observed material
behavior. Notice that a model based on back stress has
the capability of predicting the <cyclic  history
dependence very well. The back stress response is also

cyclic during the cyclic history of loading as shown in

16



800
o |

Hastelloy-X
8. 649°C
w
«
a
=
8.
ne
W
w
o
—
wo
(=3
N
% 10 20 30 40 50 60
TIME (MINUTES)
Figure 2.1 Stress Relaxation Using Walker Model
©
t?-
8.
o
»
Z 3.
a
o
—
w
S
% 4 3 12 16
TIME (MINUTES)
Figure 2.2 Strain History Imposed for Cyclic Capability

Evaluation




Figure 2.4. The back stress is not near saturation;
the flat portions in the response are during elastic
loading and unloading where the inelastic strain rates
are close to zero.

The material parameters from Reference [14] used
in the previous calculations implied that the drag
stress K remained constant since ny=0 in Equation 2.14.
To model cyclic hardening or softening behavior the
drag stress K must be a variable. The cyclic softening
modeling capability was qualitatively verified by using
arbijtrary values for K2 and n, in Equation 2.14. It
was possible to simulate cyclic softening by decreasing
the drag stress as shown in Figure 2.5.

Oone of the major advantages of a back stress model
is its capability to model anelastic recovery. It has
been observed in materials at high temperature that,
when a specimen is loaded into the jnelastic regime and
unloaded, there is a time dependent recovery of the
residual inelastic strain [1]. Since the inelastic
strain rate depends on the difference of the applied
stress and back stress, Equation 2.12, anelastic
strains can be modeled whenever this difference is
negative. The constants Kz and ny in Equation (2.14)
were changed to verify the anelastic recovery of the
Walker model. Figures 2.6 and 2.7 contain the results

of this exercise where the strain is held at a low

18
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value of stress on the unloading branch. Time depen-

dent recovery of the stress is observed in Figure 2.7.
2.3.2 Robinson Model

A unified constitutive model based on back stress
and drag stress has been proposed by Robinson [17,181].
This model 1is different from the other models since
different flow and evolution equations are used for
loading and unloading. In this sense it bears close
resemblance to classical plasticity in that it can also
be derived from a plasticity potential. The model is
considered as a unified theory since no distinction is
made between creep and plastic strains. The model is
summarized in the following equations and inequalities:

I..
FP-1 . F>0 and S,

/j' ]j21j>0 (2.17)
2ué!.= 2
ij 0 ; F<0 or sijzijﬁo (2.18)
1 %5 .
4. .= 2
iJ 1 Q..
e 4.
2upe =T, ; 66, or S <0 (2.20)
where

Fe (21, 1 (s ) :
s (- 1), Iy s (S -agg), 6= [
K ij IF R b <

22
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The material parameters are u, 8, n, m, R, H and Gg.

The Robinson model has a back stress ajj to model
kinematic hardening characteristics. The isotropic
variable K plays the role of a threshold stress below
which the inelastic strain rate is zero. Isotropic
hardening or softening can be modeled by varying K.
Most of the applications appear to have been made with
a constant value for K.

The Robinson model was programmed to explore its
capabilities using the material parameters for 2% Cr -1
Mo steel at 538°C from Reference [18). The model showed
monotonic strain rate sensitivity, Figure 2.8, and
appears to have some interesting creep response
characteristics. Some materials display a delay in the
creep response when stress is suddenly lowered during
secondary creep as shown in Figure 2.9. It is seen
that the Robinson model predicts creep at a lower rate
after a brief delay which depends on the amount of
stress drop, Figure 2.10. The response of the back
stress, shown in Figure 2.11, gradually saturates to

different limits.
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The cyclic capability of the Robinson model was
investigated by imposing constant strain rate strain
histories with variable amplitude similar to that shown
in Figure 2.2. The hysteresis response was similar to
that shown in Figure 2.3.

In fully reversed cycling, the model tended to
saturate after the first cycle as shown in Figure 2.12.
This is perhaps due to an inadequate model for the drag
stress, K. The model shows a fading memory of prior
stress relaxation for large strain ranges. A
comparison with and without a one minute tensile strain
hold is shown in Figures 2.13 and 2.14. The tensile
strain hold results in significant stress relaxation.
However, after the first cycle, the effect of the
stress relaxation appears to have been 1lost on the
compression side of the loop. It was also noted that a
one minute compressive strain hold also gave the same
result at the end of the first cycle. These response
characteristics are probably not realistic material

behavior.

2.3.3 Bodner Model

Bodner and coworkers [19,20] have developed a

unified theory which has a single scalar internal
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variable. These equations are fairly simple and have
been used for Rene” 95, IN100, and IN718. The flow

equation is similar to Prandtl Reuss flow law,

oI -
where
P
12=23 J.=%S. .S (2.22)
T, 27%553545» .
and
oP=p2exp |- n“1(22 )N (2.23)
2°VoexXP n 33; . .

The evolution equation for Z is given by

. i Z-1, r
Z=m(Zl-Z)N -AZl(—TI—) (2.24)

where 73 1is the maximum value of Z and Z, is the
minimum recoverable value of Z. The internal variable
Z has Dbeen interpreted as being a macroscopic
representation of the resistance to inelastic flow.
The evolution of Z depends on the inelastic work rate,
Wl, rather than |el| as in the other models. In the
absence of thermal recovery, A=0, Equation 2.24 can be

integrated as
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I
z=z1+(zo-zl)e‘m“ (2.25)

where W! is the past accumulated inelastic work. Thus,
in tensile tests the state variable Z is a
monotonically increasing function of WI and is used to
model strain hardening.

This model is particularly simple and has only a
few material parameters. Procedures have been
established to systematically evaluate these parameters
from test data [21]. Material parameters for Rene” 95
at 649°c from Reference [20] were used to verify the
strain rate sensitivity and creep response of this
model. These are shown in Figures 2.15 and 2.16.

The Bodner model described above 1is for isotropic
material response. It has been extended for
anisotropic materials [22,23]. Bodner has recently
modified the original model to incorporate a form of
directional hardening. This will be discussed in more

detail in Chapter 4.
2.3.4 Miller Model

A unified constitutive model based on a drag
stress and rest stress (back stress) has been developed

by Miller [24) for wuniaxial 1loading. It has been
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observed for a number of materials that the steady
state creep rate correlates with the applied stress in

the form of the hyperbolic sine; i.e.,

eS8 {Sinn(Ac ) }" (2.26)
where B' is a temperature dependent <coefficient.
Miller used this result to obtain a flow equation and
static thermal recovery functions. Miller's model can
be written for multiaxial loading in the following form
[14]:

3
. ) 3r\[—S.»9.J
! .ge [Sinh{%}é] 27ij i3 (2.27)

i X

where x=//'%[%sij-nij][%sij-niﬂ

° -

”» Q. .
nij=H,e§j-Hlse [Sinh(A;a) n —%l , (2.28)

K=H ﬁ[C Asz] H2C BGI
= +a- -H20 2
2 2 51 I

where o= /20, 0, (2.30)

] for T>.6T (2.31)

3
Sinh (A X )]“ (2.29)

Zlo

e' =exp [.
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, 6T
0 =exp[- E%T—{lﬂn . "‘}] for T<.6T (2.32)
m

R is an effective inelastic strain rate, defined
previously.

A unique feature of this model is that only the
material parameters ©° and K, (the initial value of K)
are dependent on temperature. This could simplify the
material parameter requirements for the model. The
back stress equation <contains only static thermal
recovery terms; whereas, the drag stress equation has
both static and dynamic recovery terms. The functional
form for both the static recovery terms is similar to
that used in the flow law.

This model has been exercised to evaluate various
capabilities. It was found that numerical integration
of the equations is far more difficult than for any
other models considered in this study. The model
requires very small time steps even fo simple loading
cases. The numerical difficulties arise due to the
highly nonlinear functional forms and the state
variables tend to saturate very quickly. The
calculated response of monotonic 1loading at different
strain rates, shown in Figures 2.17-2.19, has trilinear
behavior [14]. It is seen in Figures 2.18 and 2.19
that the state variables change from elastic to
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inelastic and to the saturated condition very rapidly
in very distinct regions. The stress relaxation
behavior predicted by this model 1is shown in Figure
2.20. The cyclic capabilities could not be fully
evaluated. In general, it was possible to calculate
the response for only one cycle due to the enormous
number of time steps required. The hysteresis 1loops
predicted by the model also showed a trilinear behavior
similar to that in Figure 2.17. A1l the evaluations
were done using material parameters for Hastelloy-X at

649°C from Reference [14].
2.3.5 Krieg, Swearengen and Rohde Model

This model also contains back stress and drag
stress and has a power law type of flow equation. The
back stress is identified with the effects of
dislocation pileups at obstacles and the drag stress is
considered as a mechanical strength variable. The

equations for this model are written as follows [25]:
12" &
p =. — 2-33
€p~€o| R TZT ’ ( )

cgs-s (2.34)
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2.4

L ] * K
E=Aafp"§|K2 [expi-'(—;’-lglzz-l]g, and (2.35)
n
. R-R
- ” 0 u_
R-Alepl-Kx[ T ] exp(- KT)’ (2.36)
The model has only static recovery terms. The

monotonic and creep behavior of the model have been
discussed in detail for aluminum [25]. The model has
not been extended to cyclic hardening or softening.
The constants for aluminum reported in Reference [25]
assume the drag stress to be constant.

This model was exercised for monotonic, creep and
cyclic 1loading conditions. Two examples of response
are shown in Figures 2.21 and 2.22. It can be seen
that the state variables approach saturation rather
abruptly, similar to the Miller model. This could be
due to the value of the constants or perhaps the lack
of dynamic recovery terms and the use of exponential
form in static recovery. The model could not predict
any anelastic recovery with the constants reported for

aluminum.

Summary of Model Evaluation

The detailed evaluations performed on the five

mode1s discussed before were based on material
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constants for different materials and temperatures.
They do not necessarily reflect the behavior of Rene”
80, the material being investigated here. However,
they have 1led to an understanding of the response
characteristics of unified models 1in general. Some
potential areas of difficulties in numerical
implementation and material parameter evaluations for
the models have also become apparent. These are

briefly discussed below.
Strain Rate Sensitivity

A1l the models exhibited strain rate dependent
tensile behavior. This 1is a basic requirement for
models that are to represent high temperature material
behavior. At 1low temperatures most materials do not
show strain rate sensitivity. The capability of the
unified models at low temperatures was not evaluated.
The characteristic behavior of the internal variables
ijs usually different for the various models. In the
Walker, Robinson, and Bodner models, the sfate vari-
ables saturated to the same limit at high strain rates;
whereas, for the Miller and Krieg models, the
saturation values for the state variables are strain

rate dependent.
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2.

4.2

Creep and Stress Relaxation

A1l the models examined appear to have the basic
ability to predict primary and secondary creep. They
also exhibit stress relaxation during a constant strain
history. The basic feature of the models which provides
these capabilities is the hardening recovery term in
the evolution equations. Some models had both static
and dynamic recovery terms. None of the unified models
can predict tertiary creep. The Robinson model appears
to have the ability to predict transients due to a
stress drop during steady state creep. This 1is a

desirable feature for practical applications.

2.4.3 Cyclic Behavior

Almost all the unified models available to date
were developed based on monotonic and creep behavior;
however, almost all the structural applications involve
cyclic loads. It is extremely important that the
models should adequately model cyclic behavior. The
models examined had varying degrees of cyclic hardening
or softening capabilities. Although the structure of
the equations would permit modeling cyclic hardening or

softening, none of the models appear to have been fully
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developed in this regard. It appears that models based
on a kinematic back stress and an isotropic drag stress
can model <cyclic behavior more realistically. In
general, cyclic hardening or softening behavior is

modeled using the variations of the drag stress.

2.4.4 Anelasticity

Anelastic recovery cannot be predicted by the
classical Prandtl Reuss flow law. The Bodner model,
which is an extension of this type of flow law, suffers
the same drawback. The structure of the models based
on back stress and drag stress enables the modeling of
anelastic  recovery. This capability was verified by
using hypothetical material parameters in the Walker

model.

2.4.5 Numerical Implementation

The computer programs used to make the evaluations
employed a simple forward Euler integration scheme.
This worked well for all the models. However, the time
step size requirements for the Miller mode]l] were
particularly small. Higher order integration schemes

with automatic time incrementing would be beneficial
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for this model. Even so, the Miller model appears
least desirable from a numerical standpoint. This is
due to the highly nonlinear functions used in the
evolution equations. The Robinson model also has less
desirable properties due to the 1inequalities. The
functions used in the constitutive model <change
discontinuously across these inequalities. The Bodner
model presented no major problems, although it required
the use of small time steps. The Walker model also
presented no major difficulties. In general, the back

stress drag stress models require more storage.

2.4.6 Material Parameters

This perhaps is the biggest area of difficulty for
the wunified theories. The evaluation of material
parameters varied significantly among the various
models. There does not appear to be a general
procedure to evaluate these parameters. The only
exception is the Bodner model which has only one state
variable. It is desirable to have a method of finding
these constants from standard test data. Most of the
models have been verified at only one temperature;
thus, the temperature dependency of the material

parameters is not clear.
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CHAPTER 3
REVIEW OF THE EXPERIMENTAL PROGRAM

The main objective of the research program is the
development and verification of constitutive equations
for modeling high temperature material behavior. One
of the most important requirements for accomplishing
this objective is the establishment of an accurate data
base for the material behavior under investigation.
This data base must include a wide spectrum of 1loading
histories and temperatures. In the past many
constitutive equations have been formulated from a
limited data base. The temperature range is limited
and there is almost no multiaxial data at elevated
temperatures. Differences in the <chemistry, heat
treatment and experimental techniques can cause
considerable inconsistencies in the observed behavior.
Recognizing this severe problem the National
Aeronautics and Space Administration, Lewis Research
Center, Cleveland, has sponsored a program which
includes the development of a uniaxial and multiaxial
data base for the two superalloys, Rene” 80 [26] and
B1900 ([27] at several temperatures.

Rene” 80 was experimentally evaluated by Van Stone

[26,30] as part of a NASA contract to
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3.1

General Electric Company, Aircraft Engine Business
Group, Cincinnati, Ohio. This study was conducted in
conjunction with the current research on constitutive
modeling and 1is reported separately. However, the
relevant aspects of the experimental study are included
in this report because of their impact on the current

research.

Description of the Program

The experimental program has several distinct
objectives. These include the generation of mechanical
response data that are relevant to gas turbine
applications. The temperature, strain range and strain
rates were selected to satisfy this need. The specimen
designs wused in the tests also conformed to this
requirement. The program was designed to maximize the
amount of data obtained from each test. Advantage is
also taken of the recent developments in testing
technology. Finally, computerized data reduction
methods were developed which are specifically suited
for constitutive equation development.

Three types of tests were performed; uniaxial,
multiaxial (tension/torsion) and wuniaxial tests on
notched specimens. The uniaxial and multiaxial tests

are for the development and verification of the
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3.2

constitutive equations and are included the study. The
structural verification study using the notch
specimens will be reported separately 1[30]. The
uniaxial tests were performed by Dr. R. H. Van Stone at
General Electric Company, Evendale, Ohio. The
tension/torsion tests were performed by Dr. R.
Williams at General Electric Company, Schenectady, New
York. The two categories of tests include model
development and model verification. The results of the
model development tests are used to generate the
material parameters for the constitutive model. The
results of the model verification tests are used for
comparing the observed material behavior with that

predicted by the constitutive model.

Material and Specimen

Rene® 80 was chosen for investigation 1in this
program. It is a nickel based superalloy that is
widely used for high temperature components such as
blades and vanes in gas turbine engines. The strength
of this alloy is derived from gamma prime precipitates,
Ni3(A1,Ti), and the solid solution of molybdenum and
tungsten in the matrix gamma phase. The chemical
composition of the material used in this program and

nominal Rene” 80 composition is given in Table 3.1.
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Cylindrical specimen blanks were investment cast
from remelt stock of Rene 80 in two sizes. The
smaller blanks (1.3 cm diameter x 10 cm) were used for
tensile, creep and cyclic test specimens. The larger
blanks (3.0 cm diameter x 15 c¢m) were wused for
tension/torsion testing. Both castings had
approximately the same grain size (» 0.6 cm). These
specimen blanks were given the standard heat treatment
for Rene~ 80, shown in Table 3.2.

Specimens were later machined from these blanks.
Figure 3.1 shows the thin wall tubular test specimens
used for wuniaxial experiments. A wall thickness of
about .08 cm was chosen because it is typical of most
blades and vanes used in engines. It has been reported [28]
that there is a thin wall effect on at least some of the
mechanical properties of Rene” 80. The grain size of Rene”
80 used in this study is much larger than the test
specimen wall thickness. Although this may increase
the risk of data scatter, thin wall specimens were
specifically chosen to represent actual gas turbine
components. Figure 3.2 shows the cylindrical hollow

specimen used for the tension/torsion tests.
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Element

C
Mn
Si

Table 3.1 Composition of Rene” 80

Specification

Certified Analysis

0.15"

0.10
0.10

0.0075 Max.

0.14
Max.
Max.

0.015 Max.

13.70-
4.80-
0001"'

14.30
5.0
0.12

2.8"302

3.70-
3.70-

7.70

9.00-
0.02-

0.03
0.10
0.10
0.10
0.10
0.10
0.10

4.30
4.30
Min.
10.00
0.10
Max.
Max.
Max.
Max.
Max.
Max.
Max.

Balance

48

0.17
0.01
0.02
0.002
0.009
14.06
4.87
0.015
3.05
4.00
4.06
8.06
9.55
0.03
0.07
0.01
0.02
0.01
0.01
0.01
0.0032
Balance




Table 3.2 Heat Treatment of Rene” 80

(i) 1204°C (2200°F)/2 hours; cool to 1093°C
(2000°F) within 10 minutes; cool to room
temperature.

(ii) 1093°C (2000°F)/4 hours; cool to 649°C
(1200°F) within 6 minutes; cool to room
temperature.

(iii) 1052°C (1925°F)/8 hours; cool to 649°C
(1200°F) within 30 minutes, cool to room
temperature.

(iv) 843°C (1550°F)/16 hours; cool to room
temperature.
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3.3

Description of the Uniaxial Testing Program

Three types of wuniaxial tests were performed.
They are monotonic tensile, constant load creep and
cyclic tests. A1l tests were done on closed 1loop
servocontrolled machines. The monotonic tensile tests
were performed under strain rate control to obtain
strain rate sensitivity data. Creep tests were
performed under stress control conditions at different
stress levels. The cyclic tests were also strain
controlled and were performed at different strain
rates, hold times and Ag ratios ( Ag = alternating
strain/mean strain). Variations were made in Ag to
study the effect of mean stress, which has been shown
to have significant influence on low cycle fatigue life
[29]. A1l the cyclic tests and tensile tests were
performed under strain rate control. The cyclic tests
were done in blocks of approximately twenty cycles with
each block having a different strain amplitude. The
same block strain range history (.0030, .0060, .0090,
.0060, .0030, .0090, .0030) was wused on all the
uniaxial cyclic tests. The first three blocks had
increasing strain amplitude and next two blocks had
decreasing strain amplitude. The last two blocks had a

sharply increasing and decreasing strain amplitudes to
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study possible transient effects. An example of the
imposed strain history is shown in Figure 3.3.
Complete hysteresis loops were recorded at each point
shown in this figure.

A11 of the above tests were performed at three
primary temperatures of 982°C (1800°F), 871°C (1600°F)
and 760°C (1400°F). A limited number of monotonic
tensile and creep tests were also performed at 1093°C
(2000°F), 649°C (1200°F) and 538°C (1000°F). The test
matrix and specimen allocation for all uniaxial tests
are shown in Table 3.3.

Most nickel base superalloys have a general change
in response characteristics in the temperature range
considered in this study. At the higher temperatures
significant time and rate effects are observed. At the
lower temperatures the rate sensitivity is essentially
absent, but creep and relaxation response is present.
The transition occurs at about 750°C to 800°C. At this
temperature the ductility is minimal as shown in Figure
3.4. This type of behavior is expected to complicate

both the testing and modeling.

Tests at 982°C (1800°F)

The monotonic tensile tests were performed at

strain rates of .002 per minute, .02 per minute, .06
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per minute, and .2 per minute. One additional
monotonic tensile curve was obtained from a scheduled
cyclic test which accidentally failed due to initial
overload. The specimens were extended to strain values
of .016 to ensure saturation., At the end of each test
the strain was held constant to obtain stress
relaxation data. In general, terminal strains larger
than .016 resulted in specimen failure.

The creep tests were performed at 300 MPa, 217
MPa, and 110 MPa. These tests were done under 1load
control with an elastic strain rate of approximately
.02 per minute. These tests were stopped after an
inelastic strain accumulation of about .01 or after 150
hours.

It is observed [1] that, under typical aircraft
engine operating conditions, a negative mean strain
exists in turbine airfoils at higher temperatures.
The Ag=-1 tests at 982°C have negative mean strains.
Two tests were performed with 12 second and 120 second
hold times, at compressive peak strain. This s

frequently encountered in airfoils at high temperature.

3.3.2 Tests at 871°C (1600°F)

In general the ductility 1is lower at this

temperature. Thus, the monotonic tensile tests could
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not be run to the high values of strain required for
saturation. Three monotonic tensile tests were
performed at strain rates of .2 M-1, .02 M-l and .002
M-1. Three creep tests were performed at stress levels
of 493 MPa, 413 MPa and 313 MPa. The c¢yclic test
conditions were exactly the same as those at

982°C (1800°F).

3.3.3 Tests at 760°C (1400°F)

Most of these tests are the same as the tests at
871°C (1600°F). Creep tests were done at higher stress
values to obtain measurable creep. Four additional
cyclic tests included two with a tensile mean strain
and two with tensile hold time. Since the ductility is
very low at this temperature, the strain levels in the

monotonic tests were expected to be low.

3.3.4 Tests at Other Temperatures

A limited number of tests were performed at other
temperatures. Three monotonic tensile tests were
performed at 538°C (1000°F) at strain rates of .2 M-1,
.02 M-1 and .002 M-1., oOne strain rate controlled (.02
M'l) monotonic tensile test was performed at 649°C

(1200°F). A creep test at 114 MPa was performed at
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1093°C (2000°F). No cyclic tests were done at these

temperatures.

3.3.5 Results of the Uniaxial Experimental Program

The amount of data acquired during the
experimental program is enormous and presentation of
all the data for each test 1is not practical. Only
typical examples are shown to discuss specific material
phenomena. Additional data are presented in 1later
chapters in comparison to predicted response.

The monotonic tests revealed the strain rate
sensitivity of Rene 80 as a function of temperature.
At 982°C (1800°F) there is a very large sensitivity to
the applied strain rate, as shown in Figure 3.5;
whereas, at 538°C (1000°F) there 1is no strain rate
sensitivity, as shown in Figure 3.6. At 871°C (1600°F)
there 1is some strain rate sensitivity but very
little at 760°C (1400°F). The lack of monotonic strain
rate sensitivity in the tensile tests at 760°C does not
imply the absence of time dependent effects. As shown
in Figure 3.7 there is a significant amount of creep.
Similarly, there 1is a significant amount of stress
relaxation at temperatures above 760°C. An example of
stress relaxation is shown in Figure 3.8 for a 12

second compressive peak strain hold at 982°C (1800°F).
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Rene” 80 1is generally cyclically stable at all
temperatures except at the higher temperatures (982°C
and 871°C) and higher strain rates, where some
softening is observed for the first few cycles. Thus,
cyclic softening behavior is a function of both
temperature and strain rate. The cyclic stress strain
behavior is compared with the monotonic stress strain
curve in Figures 3.9, 3.10, and 3.11. The cyclic
response is presented as half of the total stress and
strain range for a number of cycles from the block
history. At 982°C (1800°F), there is a considerable
amount of cyclic softening at a strain rate of .2 per
minute as shown in Figure 3.9. However, at the lowest
strain rate of .002 per minute there is no softening
(see Figure 3.10). Figure 3.11 shows the material is
essentially cyclically stable at 760°C (1400°F). This
result is not conclusive since the tensile test results
are not ordered with respect to the strain rate. This
scatter is probably associated with the 1lack of
ductility at 760°C. The mean strain tests (A. = -1.0)
showed that there is a considerable amount of mean
stress relaxation. An example is shown in Figure 3.12
for the first few cycles of mean strain test at 982°C
(1800°F). This figure also shows the development of

cyclic inelastic strain.
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3.4

Multiaxial Experiments

In structural components the state of stress and
strain may not be uniaxial. Usually a complex three
dimensional stress and strain state exists. In the
past experimental investigations of three dimensional
stress and strain states have been possible for elastic
loading wusing photoelasticity techniques. Even in
these studies the cyclic loading conditions which are
of primary importance are not possible.

Room temperature biaxial tests have been conducted
for a number of years in the experimental investigation
of yield surfaces [13]. These wusually involve a thin
tubular specimen which is 1loaded simultaneously in
tension and torsion or in tension and internal
pressurization. Biaxial testing under cyclic loading
conditions with independent control of the strain or
load in each of the two directions has become possible
only recently. Advances in extensometry and computer
control have been responsible for sophisticated biaxial
tests at high temperatures. These bjaxial tests are
usually in a tension/torsion mode.

The tension/torsion tests described below were
performed by Dr. R. Williams at the Turbine Technology
Laboratories of General Electric Company in Schenectady

[30]. The axial/torsion extensometer used to measure
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and control the tensile and shear strains
simultaneously was developed by the Instron
Corporation. The strain measurements were made using
high temperature capacitive displacement gauges. The
details of the extensometer are are given in References
[26] and [30].

Multiaxial tests were performed at 982°C (1800°F)
and 871°C (1600°F). Seven tests were performed at
each temperature. Table 3.4 and Figure 3.13 give the
details of the torsion and multiaxial tests. At each
temperature two torsional cyclic tests were performed to
determine the strain rate sensitivity. Strain rates of
.002 per minute and .02 per minute were used. Two
simple in phase axial/torsion tests were performed with
exx=c‘7xy
3.13a. Another in phase test was done with a 120

for C being constant as shown in Figure

second hold at a peak strain point (see Table 3.4).

In analyzing multiaxial behavior, out of phase
loading conditions are important. In an effort to
harden the material in all possible planes, two types
of out of phase tests were performed. These are shown
in Figures 3.13b and 3.13c. In Figure 3.13b each block
of cycles, such as A-A, is proportional. However, the
sequence produces out of phase hardening effects since
the maximum shear planes are different for each block.

The out of phase test condition shown in Figure 3.13c
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Table 3.4 Multiaxial Test Matrix

(For Temperatures of 9820C and 8710C)
Type of Test Phase Relationship ¢ (M-1) Figure

Torsion .02,.002
Tension/Torsion In Phase .02,.00? 13a
(single)
Tension/Torsion In Phase Variable** 13b
(multiple)
Tension/Torsion 900 Out of Phase .002 13c¢
Tension/Torsion In Phase .02 13a

120 second hold*

* The hold time is at maximum strain for the 8710C
test and at minimum strain for the 9820C test.

** A constant cycle time of 360 seconds for all the
cyclic blocks.

65



sjuau
-143dx3 uoLsSu0]
JUuoLsua] 4034
syjed burpeoq ¢g|'¢ a4nbiy

2,

buLpeo
feuorjaodoaduoN °“aseyqd uJ ajdiLy|ny

1,

J

(9)

AN
/

butpeon

burpeoq [euorj4odoaduoN
aseyd 40 3ng 3aubap g6 (2)

21,

Leuorjaodoad ‘aseyd ul (e)

66




is continuous. The loading condition changes linearly
from pure tension at point A to pure shear at point B.
The peak strain values at points A and B were chosen
such that the octahedral shear strains are the same at
these two points. A1l the multiaxial tests except the
multiple proportionality test (see Figure 3.13b) were
performed in sequences of cyclic blocks with different

strain ranges, similar to the uniaxial experiments.

3.4.1 Results of the Multiaxial Testing Program

Some examples of the experimental results from the
torsional and multiaxial tests are given 1in Figures
3.14 to 3.16. Figure 3.14 shows six hysteresis loops
(at the end of each block) from a torsion test at 982°C
(1800°F). Three strain ranges of .0024, .0048, and
.0072 were used and a strain rate of .002 M -1 was
maintained. The hysteresis loops coincide exactly for
each strain range. This indicates the absence of any
cyclic softening or hardening. It is also seen that
the hysteresis loops are not symmetrical. The bias in
the negative direction remains the same for all loops;
therefore, it appears to depend on the initial loading.

The bias was present in all pure torsion and in the in
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phase tension torsion tests. Figure 3.16 is a typical
example.

Only cyclic tests were performed in the torsion
mode. Figure 3.15 compares the torsion test results
from a number of hysteresis loops. The results are
shown as half of the range quantities from the Tlower
tip of the hysteresis loops. The coincidence of this
result from various cycles confirms the 1lack of any
cyclic softening or hardening. Recall that the same
result was observed for the uniaxial tests at this
strain rate (Figure 3.10). The lack of cyclic
hardening or softening impies that the torsional cycle
stress strain curve shown in Figure 3.15 <can be
considered as representing the initial torsional load up
curve. The monotonic tensile loading response at the
same temperature and strain rate is also shown in
Figure 3.15 for comparison.

The cyclic hysteresis 1loops from the first and
“last block of a multiple in phase tension torsion test
are compared in Figure 3.16. They are again coincident
indicating the 1lack of any history effects due to

changes in the proportionality factor during testing.
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3.5 Data Processing

It is desirable to have stress, strain and time
data at each instant during an entire test for the
development of the constitutive parameters. This will
ajid in the modeling of both transient and steady state
behavior. In wuniaxial tensile tests the Tload-
displacement curve was recorded on an X-Y plotter.
This curve was later digitized to obtain approximately
100 data points. Since these tests were done at
constant strain rate, time was <calculated at each
point. A similar procedure was used for the initial
loading of creep tests. The displacement during creep
was also continuously recorded on a strip chart. This
displacement versus time plot for the entire test was
later digitized.

An automated data acquisition system manufactured
by Engineering Technical Services of Champaign,
I1linois, was used for recording the cyclic test data.
This system sampled and stored data at various points
during a cycle. Voltage information related to 1load,
displacement and time was stored in a buffer which was
later transferred to tapes. Approximately 200 data
points were taken for each cycle. Data was taken for

the first three cycles at the beginning of each block
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and subsequently for every other cycle. Loops were
also recorded periodically on conventional X-Y
plotters. These helped to verify the accuracy of the
automated data acquisition system.

The load and displacement data were first
converted to stresses and strains using the engineering
definitions for these quantities. The elastic modulus
for each test specimen was determined using the initial
part of a stress strain curve. A significant variation
in the values for the modulus was observed [26]. The
inelastic strain was determined using the calculated
modulus for each specimen.

The unified constitutive models wusually predict
the inelastic strain rate. To determine stress or
inelastic strain rate from the test data, the stresses
and inelastic strains were numerically differentiated
with respect to time at each data point. A second
order seven point sliding polynomial proved adequate
for this purpose. Accumulated inelastic strain and
jnelastic work was also calculated. A1l the data for
each specimen was stored on a computer file in a matrix
of stress, strain, time, inelastic strain, stress rate,
strain rate, inelastic strain rate, accumulated
jnelastic strain, accumulated inelastic work and cycle

number. These computer files were later used for
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CHAPTER 4
PREDICTION OF RENE” 80 RESPONSE USING UNIFIED MODELS

The response characteristics of some wunified
constitutive models were presented in Chapter 2 for a
variety of loading conditions. This exercise
demonstrated the general capabilities and 1limitations
of the unified models. The study was essentially
qualitative 1in nature due to the 1lack of a common
experimental data base and appropriate material
parameters. The materials and temperatures studied
were Rene” 95 and Hastelloy-X at 649°C, 2% CrMo Steel
at 538°C and Aluminum at 43°C. It is desirable to
reevaluate the ability of the unified models to analyze
the response behavior of Rene” 80 described in the
previous chapter.

One outcome of the initial study is that the
models could be categorized into two general types.
The first type, typical of the Walker, Robinson, Krieg
et.al. and Miller models, had a tensorial back stress
and a scalar drag stress. The second type, like the
Bodner model, has a single scalar state variable which
is used to model the rate dependent strain hardening
effects. In this chapter the merits of the two types

of models are evaluated for their ability to predict
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4.1

Rene ” 80 response. This will require the evaluation of
the material parameters for the models. A long
standing difficulty in the application of wunified
constitutive models is the development of the material
constants. This difficulty is alleviated to a certain
extent by: (1) proposing a general procedure of
material parameter evaluation that 1is applicable to
most of the wunified theories; and (2) evaluating
parameters for a generic back stress drag stress model,
rather than the four individual models, that contains

the essential properties of this type of model.

Generic Back Stress Drag Stress Model

The varjous back stress drag stress models have
different functional forms in their flow and evolution
equations. There are also differences in the dynamic
and static recovery terms. It appears that the
functional forms in the different models were selected
for modeling a specific material or class of materials.
However, there are striking similarities in the general
structure of the flow and evolution equations in the
various back stress drag stress models. This has also
been observed by Walker [14) and Lindholm [27]. The
essential structure of the constitutive models can be

characterized for uniaxial loading as:
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el=F(0,0,2,T) (4.1)

Gefi el -fan|el|-R, (4.2)
1= o] o]
=g1|e!|-ga2z | el |-R, (4.3)

where Q(0)=0 and Z(0)=Z, are the initial conditions.
Equation 4.1 is the flow equation and Equations 4.2 and
4.3 are the evolution equations for the back stress, Q,
and the drag stress, Z, respectively. The first term
in Equations 4.2 and 4.3 is for modeling hardening and
the second term is for dynamic recovery of the state
variables. The third term is a static thermal recovery
term which 1is operative 1in 1long time predictions.
There does not appear to be any consistency in the
structure of the static thermal recovery terms R, and
R,. Further, the drag stress is frequently held
constant, Z=0, in many applications.

In order to keep the study of back stress drag
stress approach as general as possible, it is proposed
to retain the general framework of Equations 4.2 and
4.3. No specific functional forms for fj, g3, etc.
will be assumed a priori. Experimental data will be
examined in the framework of Equations 4.1, 4.2 and 4.3
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4.2

and a choice of functional forms will be made on this
basis. Such a model will be referred to as a "generic
back stress drag stress model"™ 1in the following
sections.

Stouffer and Bodner [21] have demonstrated a
technique of obtaining a state variable history during
any particular test by inverting the flow equation.
Many of the back stress drag stress models proposed
have a power law type of flow equation that is

invertible. Thus, let us assume

lep(loglyn fo-d, (4.4)

Equations 4.2, 4.3, and 4.4 constitute the generic back

stress drag stress model.

Determination of the Material Parameters

The long time static thermal recovery terms R, and
R, in Equations 4.2 and 4.3 can be neglected for short
duration tests such as monotonic tensile tests at high
strain rates. When static thermal recovery effects are
neglected the uniaxial scalar equation for the drag

stress becomes
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1=(g:1-922) | & ]. (4.5)

This equation can be integrated to give

-g zZEI
Z=Z;+(Zo-21)e (4'6)

where Iel is the accumulated inelastic strain from the
beginning of the test and Z, and Z; are the initial and
final values, respectively, of the drag stress . In
most of the back stress drag stress models, the drag
stress controlled the cyclic hardening or softening
behavior, as described 1in Chapter 2. The stable
condition is reached after cyclic hardening or
softening when 2=0. Then Equation 4.5 reduces to the
saturated value of the drag stress 1Z3=91/92. The
initial condition is Z(0)=Z, and g represents the rate
of cyclic hardening or softening. The parameters Z,,
Z1, and g are assumed to be material constants at a
particular temperature.

The accumulated inelastic strain 1is small for
uniaxial tensile tests in comparison with the value
from cyclic tests. Thus, the drag stress is almost
constant and equal to the initial value in these tests.
Further at about 2% strain the stress strain curves
become flat; thus, at saturation §=2=0=0 and &l=¢. If
oo and R, are the saturated values of the applied
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stress and back stress respectively, Equation 4.4 for

the tensile saturated condition becomes

o.-R
ﬁz%wbﬁfﬁﬂ. (4.7)
0

If a number of monotonic tensile tests are performed to

saturation at various constant strain rates the values

of Qp, Zo and n can be determined. Equation 4.7
becomes
Inga=n 1n(g,-2,)-n InZ,+ TnD (4.8)

which can be used in a nonlinear regression analysis to
minimize the error between the 1left and right hand
sides.

To determine the back stress history for the
monotonic tensile tests, the flow equation was
inverted to give

1
a=g-2{e!}" . (4.9)

Since Z=Z, and the stress, g, and inelastic strain
rate, &¢I, are known at each point during the test the
back stress, Q, can be calculated throughout a test.

This ability to determine the history of the state
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variables during a test is the real advantage of the
method. Once the back stress, , is known during the
test it is possible to estimate the back stress rate at
each point in the history. The data (stress, strain,
time) were collected at a large number of time points
during all the tests. This made numerical
differentiation of the back stress (or any other
quantity) possible using a seven point sliding function
technique. It was found that the function Q=AtDP gave
the best estimate. The constants A and b were
reevaluated at each time point. There is, however, one
inherent difficulty. The inelastic strains and
inelastic strain rates cannot be measured with
confidence during the initial 1loading phase of the
history. Thus, the back stress, Q, and its rate, ﬁ,
are known only from the yield point. A typical example
of the calculated response for the back stress, 9, and
back stress rate, ﬁ, are shown in Figures 4.1 and 4.2.
Notice that § becomes very small near saturation.
Knowing the behavior of Q and Q during tensile
tests makes it possible to evaluate the material
parameters in Equation 4.2. Neglecting the static

recovery, Rj, Equation 4.2 can be written as follows:

|

=f, -f2Q. (4.10)

me
=
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Since R, ¢l and Q are known a plot of (/&l) versus the
back stress (Q) can be constructed as shown in Figure
4.3. The data from the four monotonic tensile tests,
varying in strain rate from .2 M-1 to .002 M-1, tend to
cluster around a straight 1line. Thus, fi; and f2 in
Equation 4.10 «can be treated as being material
constants at 982° and can be determined.

At this point in the development the material
parameters related to the flow equation (4.4) and the
back stress evolution equation (4.2) have been
determined. Recall that the calculation of the back
stress, 2, in a tensile test required the assumption
that the drag stress is constant. This assumption can
now be relaxed. The back stress, 2, can be calculated
by integrating Equation 4.2 with known values of f; and
f2. Equation 4.4 is inverted to obtain

7= 1o-8] | (4.11)
B

Using Equation 4.11 the value of Z 1is calculated
during a test using the measured values for stress, o,
and inelastic strain rate, &l, and the integrated value
for the back stress, Q. The constants Zj and g2 in the

drag stress equation (4.6) can be evaluated using
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4.3

nonlinear regression of the data from monotonic and
cyclic tests.

It is now possible to return to Equation 4.9 and
calculate new values for the back stress, R, using the
calculated variation of Z during a test. The process
can be repeated until stable values are achieved. This
procedure is shown in Figure 4.4 for the entire process
of constant evaluation. The material parameters were
evaluated using the computer code implementing the
scheme described above. Five iterations were usually
adequate. The scheme was applied separately for two
tensile and two cyclic tests at strain rates of .2m-1

and .002M-1 as shown in Table 4.1.

The Generic Back Stress Drag Stress Model Results

The generic back stress drag stress model was used
to calculate the tensile response for each test using
the constants for that test as shown in Figure 4.5.
Excellent agreement was obtained since the constants
were determined separately for each test. These
results verify that the constant evaluation procedure
works very well. Cyclic calculations were made for the
same strain rates using the constants from the
monotonic .2 M-l and .002 M-l tests, respectively. The

results are compared in Figure 4.6. The test results
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TABLE 4.1
MATERTAL CONSTANTS FOR RENE” 80, 982°C

(a) Generic Back Stress Drag Stress Model

Based on Based on Based on

Monotonic Tests Cyclic Tests All Tests
Constant .2M-1  _oo02mM-1  .2M-1 _.oo02M-1  .2M-1g.002M-1
Do(s-1) 1.59 1.59 1.59 1.59 1.59
n 2.44  2.44 2.44  2.44 2.44
f1(MPa)x104 5.6 7.75 19.8 4.1 6.02
fs 140.2 234.5 845.6 242.8 173.0
Z,(MPa) 955 2860 189 2287 1064
Z1(MPa) 344 350 189 2287 107
g2 93.2  212.3 0 0 44.4

(b) Bodner Model

1,=8613MPa M=.6154 MPa-l n=.2853
11=15141MPa A=.6793 s-1 Do=104 s-1
1,=12058MPa r=3.563
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shown are at cyclic saturation; whereas, the
calculations are for the first few cycles and the
saturated cycle. The model displays cyclic softening
behavior as in the tests. The qualitative properties
of the model appear good, although the inelastic
strains are considerably under predicted for the 1low
rate test.

It is necessary to further investigate the cyclic
capability of the generic back stress drag stress
model. This was done using the same approach but with
the constants based on the cyclic test data. The
calculated results for each test at strain rates of
.002 M-1 and .2 M-l were excellent. The test data and
calculations are shown in Figure 4.7 for Z=Zj=constant
since the results shown are for cyclic saturation.
This further verified the cyclic capability of the
mode]l and the material constant evaluation procedure.

The previous calculations were limited in scope.
Each strain rate and 1loading condition was treated
separately. However, a constitutive model should apply
for any kind of loading conditions and strain rates at
each fixed particular temperature. Thus, it should be
applicable for all the strain rate tests. The
parameters for the generic back stress drag stress
model were determined using the five monotonic tensile

tests at 982°C. The material parameters, evaluated
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4.4

from these tests, were used to calculate the response
for the tensile tests. Although the model was good for
a particular strain rate (Figure 4.5), it is not good
for the entire set of strain rates as shown in Figure
4.8. This is an inadequacy in the model. Notice in
Table 4.1 that the material parameters related to the
drag stress are significantly different among the
various cases analyzed.

In summary, the generic back stress drag stress
model appears to have the right tendencies for the
cyclic behavior modeling. However, it has poor
tendencies for modeling strain rate sensitivity in the

monotonic tensile response.

Evaluation of the Bodner Model

The Bodner model was selected for study mainly
based on its simplicity. It has only one state
variable and fewer material parameters. The unijaxial
form of the Bodner model as proposed in References [20-

22) 1is

o]_ 2 -n+l ,Z,2n o
€ -/EDOEXP{ n (a-) } -r(;-]- (4.12)
. oP z'zz r
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A method of evaluation of the material parameters for
this model has been discussed in Reference [21]. The
flow equation (4.12) can be inverted easily. Since ¢
and ¢l are known from experimental data, the history of
Z can be calculated. This model fits very easily in
the scheme of material parameter evaluation outlined in
Section 4.2. The back stress is absent and the scalar
state variable Z in the Bodner model is treated as the
drag stress. The structure of the evolution equation
(4.13) is similar to that for the uniaxial form of the
back stress evolution equation (4.2). The major
difference is that the inelastic work rate, ﬁp, rather
than the inelastic strain rate, &I, is used to control
hardening.

The computer code was modified and wused to
evaluate all the material parameters in Equations 4.12
and 4.13. The limiting strain rate, Dy, was chosen as
104 per second and m and Z; were determined from the
high strain rate monotonic tensile tests. Since A, Z»
and r characterize static thermal recovery, these
parameters were found from the low strain rate tensile
and creep tests using

Z-Z ° ]
AZ;(Z—lz)r=Z-m(Zl-Z)NP. (4.14)
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Since only one state variable is involved in the mode]
the iteration procedure was not necessary for material
parameter evatluation.

Using the material parameters evaluated as
described above (see Table 4.1), the monotonic and
cyclic capabilities of the model were evaluated.
Figure 4.9 shows the experimental and <calculated
results for uniaxial tensile tests of Rene~” 80 at 982°C
(1800°F). The results are significantly better than
those shown in Figure 4.8. The model seems to be able
to span the strain rate range of .002 M-l to .2 m-1
very well and the shape of the calculated curves match
the experimental results relatively well.

The cyclic capabilities of the model were checked
for strain rates of .002 M-l and .2 M-1, The
experimental and calculated results using the Bodner
model are shown in Figure 4.10. The model appears to
be poor in predicting the cyclic response, especially
at the high strain rate. The predicted cyclic
hardening follows from the strain hardening in the
tensile test; whereas, Rene- 80 is observed to
cyclically soften at 982e°C. This appears to be a
problem in the Bodner model as proposed in References
[19,20) since only one scalar state variable is used to
predict both strain hardening and cyclic hardening or

softening.
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During the course of this investigation Bodner
{271 has modified his model. The revised model has

both an isotropic and directional state variable
2=21+7D (4.15)

where ZD depends on a tensorial internal variable Bij-
Evolution equations are propsed for z1 and Bij in a
form similar to Equation 4.13. The wuse of the
kinematic variable gjj is intended to replace the use
of a kinematic back stress. A limited evaluation of
this was made using some material parameters
approximated from earlier results.

The addition of the kinematic variable Bij appears
to improve the cyclic capability of the model as shown
in Figure 4.11, for the saturated cyclic case when
ZI=Zl (a constant). A new prediction program was
developed using both zl and ZD for the results shown in
Figure 4.11. It was observed that for the fully
reversed cyclic loading conditions the variation of the
state variable Z was not continuous as shown in Figure
4.12. The state variable Z shows distinct discon-
tinuities at points where the stress, g, changes its
sign. Jumps in the value of Z appear to be an artifact
of the model itself and not due to physical changes in

the material microstructure or deformation mode.
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4.5

Summary of the Evaluations

The previous study was to evaluate in detail the
uniaxial capabilities of two types of unified models
for the behavior of Rene 80 at 982°C. The generic
back stress drag stress model appears to have good
characteristics for representing cyclic hardening and
softening behavior. However, it performed poorly for
the monotonic tensile loading tests over the range of
strain rates from .002 M-1 to .2 M-l. The Bodner model
had much better monotonic tensile capabilities, but the
cyclic behavior was not adequate. It appeared unable
to represent strain hardening in the monotonic tests
and softening in the cyclic tests. Thus, it appears
that neither of these two models will be completely
adequate for representing Rene” 80 behavior for a wide

range of operating conditions.
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CHAPTER 5
FORMULATION OF A NEW UNIFIED CONSTITUTIVE MODEL

The experimental results for Rene~” 80 at 9829 in
the previous chapter showed that the generic back
stress drag stress model and the Bodner model are not
totally adequate for characterizing this material. Each
model had some desirable characteristics for specific
types of loading conditions. It is necessary that the
constitutive equation predicts both monotonic and
cyclic behavior. The model should have the correct
strain rate behavior at both high and low temperatures.
In addition, the equations must be applicable for both
proportional and nonproportional multiaxial 1loading
conditions.

This chapter contains a description of the
development of a new constitutive model. The
development is based on uniaxial isothermal response of
Rene~ 80. The primary emphasis is on predicting both
the monotonic and cyclic behavior. The idisothermal
model is extended to other temperatures in Chapter 6.
The equations are developed in multiaxial form, and the

multiaxial response is presented in Chapter 7.
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5.1

Physical Basis for Back Stress and Drag Stress

It is well established that inelastic deformation
is the result of a number of microscopic processes and
mechanisms. These include twinning, gliding of
dislocations, «climbing of dislocations, diffusional
transportation of atoms and vacancies and grain
boundary sliding [32-37]. These processes are in
general dependent wupon the material, strain rate,
stress and temperature. It is also seen that in the
higher temperature regimes the inelastic flow is
primarily due to dislocation glide and climb with very
littie twinning [32). The yield and ultimate strengths
of a particular material depend heavily on its ability
to immobilize dislocations by pinning and restrict
dislocation multiplication. Restriction of dislocation
motion can arise from several sources in the undeformed
microstructure such as lattice resistance, solid
solution atoms and discrete obstacles such as
precipitates and grain boundaries. High temperature
superalloys, such as Rene~ 80, derive much of their
strength from the gamma prime precipitates. During
loading a network of dislocation walls are formed which
develop into cells and subgrains within the material
[31,38). These dislocation networks also act as

barriers to further dislocation motion.
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5.1.1 Béck Stress

When a dislocation moving in a slip plane
encounters an obstacle such as a precipitate, its

further movement is restricted by pinning. The pinned

|

i dislocation either <cross slips or bows around the

1 obstacle changing the 1local stress state. The pinned

dislocations act to impede further dislocation motion
and dislocation pileups develop. The dislocation
pileups produce a net "back stress® which, in effect,
opposes further inelastic deformation. The existence
of a back stress has been experimentally established
[39]. It may be viewed as a "threshold" stress which
must be overcome either mechanically or thermally to
produce further inelastic slip. Thermal activation can
aid in further dinelastic deformation by dislocation
climb and cross slip. These mechanisms are generally
associated with recovery.

The back stress which develops due to dislocation
pileups 1is directional in  nature. It reacts
differently to changes in the direction of loading.
For example, when the loading direction is reversed the
dislocation pileup at an obstacle can be decomposed
without the necessity of overcoming the obstacle
itsel1f. This results in inelastic deformation in the

reverse direction at a lower stress, which is the well
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known Bauschinger effect. Thus, the directional nature
of the back stress is frequently modeled as "“kinematic
strain hardening". For constitutive modeling, it is
then assumed that the back stress is a tensor valued
quantity that can be modeled as a kinematic variable.
Several other phenomena in high temperature
material behavior have been attributed to the existence
of a back stress. It is known that when a material is
loaded into the inelastic regime and unloaded, there is
a time dependent recovery of the inelastic strain.
This anelastic recovery has been observed in Rene” 80
as reported in Reference [1]. The initial inelastic
loading creates dislocation pileups and a back stress
opposing the applied stress. When the applied stress
is removed, the back stress creates an inelastic flow
in the reverse direction which decays with time.
Similar effects have been observed in stress relaxation
at various points in a hysteresis 1loop. It has been
shown experimentally that negative stress relaxation
can exist at a positive stress on the unloading branch
of a cycle [40]. This occurs when the applied stress
instantaneously falls below the back stress, resulting
in a negative inelastic flow even for a positive
applied 1load. Similarly, lateral softening effects
have been observed in some materials when the direction

of loading 1is shifted instead of reversed. This is
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also attributed to the presence of a directional back

stress which must be directional in nature [41].

5.1.2 Drag Stress

It has been observed experimentally that there are
several microscopic effects that are isotropic in
nature. These effects arise mainly from two sources;
(1) the mutual interaction of dislocations and (2)
physical changes in the obstacle structure itself.
These effects change the inelastic strain rate (drag)
and are associated with cyclic hardening or softening.

Dislocations move within a grain or subgrain until
they are stopped at a barrier or dinteract with one
another during their motion in a slip plane. There are
numerous dislocations, i.e., dislocation forests, which
propagate in an active slip plane. The intersection of
a dislocation with the forest dislocations results in
the formation of jogs in the dislocation lines. These
Jogs can impede the further motion of screw
dislocations. The dislocation interaction process is a
short range effect occurring over distances less than 5
to 10 interatomic distances; whereas, the strain
hardening effect from dislocation pileups is a longer

range effect [42].
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Another isotropic effect is related to the
physical changes in the obstacle structures as
inelastic deformation progresses. Such changes occur
over longer periods of time typical of creep or cyclic
loading conditions. In many superalloys the smaller
gamma prime precipitates can gradually dissolve and the
larger particles coarsen [38]. Such instability effects
usually occur at prolonged high temperature exposure.
The strengths of the precipitates themselves can also
change in time, making shearing easier. It has been
observed in a number of materials that during cyclic
softening the small dislocation cells produced during
initial prestraining grow to 1larger cells. The cell
size wusually depends on the applied stress and
inelastic strain range [43-46). The cyclic deformation
structure that develops is not reversible and it does
not seem possible to explain the <cyclic softening
phenomenon solely based on variations of the subgrain
size. For example, Moteff has shown that similar
dislocation subgrains form during large strain
monotonic and low cycle fatigue tests for a cyclically
hardening material such as AISI 304 stainless steel
(47}.

Both of these effects, the mechanical strength
variations of the precipitates and the evolution of

dislocation subgrains, certainly influence the cyclic
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5'2

inelastic behavior of the material. Moreover, this
influence is isotropic in nature and should be modeled
by a scalar variable. Thus, the drag stress is
frequently introduced to model the cyclic behavior of

the material.

Development of Flow Equation

Detailed analysis of dindividual crystallographic
slip systems and development of equations representing
individual dislocation movements and their interactions
is perhaps possible for very simple material systems.
However, for complex polycrystalline superalloys this
approach is impractical. Thus, many investigators rely
solely on phenomenological observations to propose a
constitutive model. In this work both approaches are
undertaken; that s, to propose a phenomenological
model based on the observed deformation mechanisms.

It has been shown by Gilman (48], from dislocation
velocity measurements [49] on pure crystals, that the
inelastic strain rate has an exponential dependence on
the ratio of the drag stress and the applied stress.
This concept has been wused by Bodner for the
development of a constitutive model. However,
precipitation hardened superalloys develop a complex

dislocation substructure upon inelastic loading [31,38]
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which tends to oppose further inelastic straining. The
applied stress, Sjj, must overcome the back stress,
55, in order to produce further inelastic strains.
Thus, (Sij-ﬂij) is an effective stress that is required
to produce inelastic flow. The exponential form of the
flow equation proposed by Bodner 1is extended to
incorporate the effective stress, (Sij-8jj). The back
stress, Qijr depends on orientation, and both the back
stress and drag stress depend on the history of
loading.

In addition, the flow rule should be consistent
with observed material behavior. The Prandtl Reuss
equation and the Bodner equation are written as
LS CH (5.1)
where X is a scalar material function. Equation 5.1
requires that the direction of the inelastic strain
rate vector, éijl’ is coincident with the applied
deviatoric stress vector, Sij' However, recent biaxial
experiments on different materials have shown that this
is not necessarily true [27,50] for high temperature
superalloys. The angle between the two vectors varies
as a function of loading 1in a nonproportional

multiaxial test. The use of the back stress in the
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model permits the two vectors to have different
directions. Thus, the flow rule in Equation 5.1 is

revised to include a back stress,

ij) (5.2)

é§j=x(sij-n
where (Sjj-R4j) is an effective driving stress
producing inelastic straining. Both Sij and nij are
deviatoric quantities so that Equation 5.2 satisfies
the inelastic incompressibility condition. The scalar
parameter A can be found from the kinetic relation
using a procedure suggested by Bodner [21]. Squaring
Equation 5.2 and summing gives

2e13Ei5mA° 318150450 (Sy5-044) (5.3)

and
Ka=p(S; <=0y 1) (Sy =Ry
277V9437%4; ij~¥%ij’

the second dinvariants of the inelastic strain rate
tensor and effective deviatoric stress tensor,

respectively, the flow equation (5.2) can be written as
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e -/ pl ——5%:—11-. (5.4)

The form of D£ must be chosen such that it de-

pends on the back stress, fij, and drag stress, Z, in
addition to the applied stress for an isothermal
environment. Using the structure of the Bodner flow

law, one can assume

JBE:D exp -[%(Rz—z)"] . (5.5)

In Equation 5.5 D, A, and n are temperature dependent
material parameters. This equation has the form
suggested by the microdynamical considerations
discussed earlier. The exponent n is taken similar to
the Bodner model. Both A and n control the strain rate
sensitivity of the material. The parameter D can be
interpreted as a 1limiting value for the inelastic
strain rate at a particular temperature. Substituting
Equation 5.5 in Equation 5.4, the general multiaxial

flow equation is written as

. 2 108, .-0. 1)
¢ Ly exp|- A2 0| 170 (5.6)
iJ 2 3K, /K
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A large number of the experiments in the area of
constitutive modeling are performed in the uniaxial
loading condition. Uniaxial tests are very useful in
the determination of the material parameters as well as
in evaluating the response of the model for complicated
histories of loading. The multiaxial form of the flow
equation can be simplified for the wuniaxial case.
Tensor quantities are written with subscripts "ij".
The same symbol 1is wused without the subscripts to
denote its unjaxial value. Uniaxial loading conditions

are defined as

G 0 0 2 00
o o0 o}, 0 0 - 39>
oo 0 %a 0 0
e I_ 1.1 - 1
o]
f 0 - 7€ L0 0 - gn .
The parameter K2 becomes
1 1 2
KZ‘f(Sij'ﬂij)(515'915)’3(‘"“) (5.8)

and an effective inelastic strain is defined as
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5.3

.I- . ° I
€™/ 3%i3%ij (5.9)

for later use in the evolution equations. In unjaxial

loading, €

Using these and Equations 5.6 and 5.7, the uniaxial

flow equation becomes

2n
o] 2 A 7 -Q
€ -—/3_0 exp [— 2-(-'—'-0_9 ) ] Hg'ﬂ . (5.10)

Development of the Evolution Equations

The flow equation can be used to determine the
inelastic strain rate when the applied stress, back
stress, and drag stress are known. The back stress,
Rij» and drag stress, Z, are internal state variables
which cannot be directly measured in an experiment.
They depend on the entire thermomechanical history of
loading; and, hence, their representations are sought
in the form of rate or evolution equations. It is
generally assumed that the rate of change of these
quantities at any instant in time depends upon the
current state of stress, inelastic strain rate,
temperature and the internal variables; i.e.,

° = I
Qij Fl(aijo e'ij’ Qij’ z, T) (5.11)
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5.3.1

and

° L |
Z=F2(°.ij’ e'ij’ n'ij’ Z, T). (5.12)

Representations for Fj; and F2 wusually embody the
observed mechanical behavior such as strain hardening,
dynamic recovery, static thermal recovery and cyclic
hardening or softening. The state variables Qij and Z
can be interpreted as macroscopic representations of

the microscopic behavior of the material.
Uniaxial Back Stress Evolution Equation

The evolution equation for the generic back stress
drag stress model discussed in Chapter 4 appeared to
ﬁave the right characteristics. Recall that the

evolution equation had the following uniaxial form:

G=f,el-foa)el|-R, - (4.2)

The first term in the above equation 1is wused to
characterize strain hardening, the second dynamic
recovery and the function Rj] models static thermal

recovery. The value of the Dback stress in an
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undeformed material state 1is taken as zero; i.e.,
Q(0)=0. Furthermore, from Equation 4.2, at time zero
¢l.0 and R; is negligible so that (0)=0. It was also
shown in Chapter 4 that f; and f2 are constants for
Rene“ 80.

It was shown that it 1is possible to estimate the
back stress and back stress rate by inverting the flow
equation (5.10) for a particular loading history. This
was done for tensile loading of Rene” 80 at 982°C for
four strain rates. Figure 5.la shows the back stress
rate from the experimental data and Equation 4.2. Both
the test data and model are in reasonable agreement for
large strain and Q approaches zero as saturation occurs
at the end of the test. The prediction for Q in the
"elastic® region, where the inelastic strains cannot be
accurately measured, cannot be confirmed; i.e., the
test data does not show that 6(0)=0. The back stress
and the applied stress during "elastic* 1loading are
shown in Figure 5.1b for the highest strain rate test.
The dotted 1line is the back stress calculated using
Equation 4.2. The difference (g-Q), which is the
stress producing the inelastic strain rate, becomes
very large early in the elastic range and produces the
peaks 1in the curves shown in Figure 5.la. This
response appears to be unrealistic. This problem in

the elastic region has been observed by other
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jinvestigators [15] from other considerations. Thus,
let us assume the stress and the back stress are
proportional in the elastic region. This is shown by
the solid line in Figure 5.1b. This idea can be easily
incorporated 1in Equation 4.2 wusing a term that is
proportional to the stress rate.

To begin, first note that the constants f1 and f?
in Equation 4.2 are related to the maximum value of the

back stress, Qpax, at saturation; i.e.,
?E =nmax. (5.13)

Using Equation 5.13 and adding a stress rate term, the
back stress evolution equation for uniaxial loading can
be rewritten as

-1 3

+ 3 Q o1 Ge
a=pfie- ghigle ] go-Ru (5.14)

where the factor 3/2 is used for later convenience.

The physical significance of the stress rate term
in Equation 5.14 can be determined during “elastic"
loading or unloading when &l can be neglected. In this

case,
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L J

(5.15)

where G is the initial slope of the back stress versus
total strain curve. Thus, Go/E is a reversible
component of the total back stress that is recovered
instantaneously upon unloading. The total back stress,
N, can be viewed as having elastic and inelastic
components; i.e.,

I

a= £o + o (5.16)

The back stress evolution equation (5.14) can now be

refined as

.I 3 OI 3 Q 'I
al= 3¢, el- 3¢ ey -R,. (5.17)
? 7 ' 9l'llaxl l

The results of using Equation 5.14 are significantly
better than those from Equation 4.2. A comparison of
the calculated behavior with experimental data is shown
in Figure 5.2a. Figure 5.2b contains a comparison of
the response of the total back stress Qg and the
inelastic component @l during uniaxial tensile loading
at different strain rates. It is clear that the

"elastic" component of the back stress dominates in the
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early part of loading; whereas, the inelastic component

dominates as inelastic strains become significant.
5.3.2 Multiaxial Form of the Back Stress Evolution Equation

Equation 5.14 described the evolution of the back
stress for uniaxial loading conditions. However, multi-
axial loading conditions are present in most structural
applications. Thus, it 1is necessary to develop a
general multiaxial back stress evolution equation which
reduces to Equation 5.14 for the uniaxial loading.

A general representation can be obtained by
considering the material parameters in Equations 5.16

and 5.17 as fourth order tensors; i.e., assume

I

2535°Ei5k15¢1 %4 (5.18)
and -
.I - . I oI

nij-fijk1€k]'gijk]9k]|f | -Rige (5.19)

Since the material being investigated is isotropic, it
is reasonable to assume that the material parameters

fijki1, etc are isotropic tensors. The fourth order
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isotropic tensor fjjky, for example, can be written as

[51]

Fign1™ @850k *b(8 850485185,)4c(8;,847-8,184,).(5.20)

Since the inelastic strain rate tensor, éijl, is
symmetric the back stress tensor, Qij- is also sym-

metric; thus, the last term in Equation 5.20 can be

eliminated. Expanding the first term of Equation 5.20

yields

fijk]ék{=[Qsijak]+b(siksj]+ai]sjk)]ék{ (5.21)
and

fijk15k%‘°ék§51j*2béi;° (5.22)

Since exkI=0 due to incompressibility, the first term

in Equation 5.19 reduces to
IS P (5.23)
ijk1€k1 leij’ *

where fy s a scalar parameter. Using the same
reasoning, it can be shown that Ejjxy and gjjk1 reduce
to G/E and 3f1/2Qpax» respectively. Thus, it is seen
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that for isotropic response the material parameters in
Equations 5.18 and 5.19 are scalar. Hence, the
multiaxial form of the back stress evolution equation

can be summarized as

. & I
5% Boi37 84 (5.24)
and
5 =, el 3 gii_‘I-R (5.25)
ijo 85T 2N g feTTiye y

where ¢ol s given by Equation 5.9 and f1, G and Qpax
are the scalar parameters determined from the uniaxial

experiments.

5.3.3 The Drag Stress Evolution Equation

The drag stress is a scalar quantity introduced to
represent disotropic hardening or softening effects.
Physically it is interpreted as being a macroscopic
representation of the resistance offered by the
microstructural precipitates and grain boundaries to
dislocation motion.

Rene” 80 at 982°C can cyclically soften. As shown

in Figure 3.9 this softening is seen to be strain rate
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dependent with significant softening at high strain
rates and no softening at low strain rates. In most
models cyclic hardening or softening is taken as being
dependent on the accumulated inelastic strain.
Measures of <cyclic softening based on accumulated
inelastic strains are not adequate; because, for the
same value of accumulated strain the predicted response
to high and 1low strain rates would be the same.
However, a measure based on accumulated inelastic work
would produce different response for the high and low
strain rates.

A representation for the drag stress is proposed

which is identical to the Bodner Equation; i.e.,

Z=m(Z,-2)W!-R,, (4.13)

with the initial condition Z(0)=Z,. But the physical
interpretation and the role of the drag stress are
different from the Bodner model. In the above
equation, the drag stress models cyclic softening
with Z5>Z1; whereas, Bodner used Equation 4.13 to model
strain hardening in the tensile response with Z1>Z,.
The value of Z] in Equation 4.13 is the saturated value
of the drag stress Z and the rate of cyclic softening

is determined by the parameter m. In the experiments
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5.4

performed on Rene” 80, there was no time dependent
recovery of the cyclically softened state; hence, the
recovery term R2 1is omitted. In this case, Equation
4.13 can be integrated to give

I
z=Zx+(zo-Zx)e"“w i (5.26)

Since Z21<Z,, Equation 5.26 vrepresents Z as a
monotonically decreasing function of the accumulated
inelastic work, WI. This happens after a sufficient

number of cycles in a cyclic test.

Evaluation of the Material Parameters

The material parameters in the model can be
determined from uniaxial test data using a procedure
similar to that outlined in Chapter 4 for the generic
back stress drag stress model. Recall, two assumptions
were made as part of this analysis. First, the back
stress s saturated at the end of tensile tests,
Q=8nax. Second, the drag stress variation is small for
the tensile tests, Z=l,. The flow equation (5.10) can

be inverted to give

/A v3e
( 0 )Zn_ 2] S (5 27)
m C LR " 20 .
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where the subscript s in the above equation indicates
saturation. The constant A is related to the strain
rate sensitivity at lower temperatures. At 982°C, A is
taken as unity. The scaling factor D is taken as one
per second. Zg, fpax and n are then determined from a
number of monotonic tensile tests at different strain
rates.

The history of the back stress for a particular

uniaxial loading history can be calculated using
. 73 d] %
el 2 € n
R=0-1 A]ﬂ —Z-D_] s (5.28)

For tensile tests Z=Z, is wused initially, consistent
with the second assumption made earlier. The initial
slope of the back stress versus strain curve, G, in
Equation 5.16 is then determined. Using Equation 5.28
the back stress rate, ﬁ, is calculated numerically.
The constant f] in Equation 5.17 is then determined.

The material parameters in the drag stress
evolution equation are determined 1in a slightly
different manner. The flow equation is first inverted

as

1 1
Z=(o-ﬂ)[— %m %5- ] T (5.29)




5.5

Notice from Equation 5.26 that when the accumulated
inelastic work WI is large, such as in a cyclic test,
Z=11. The back stress history is first calculated for
a saturated cyclic hysteresis loop using Equation 5.28.
Since the starting value for Q for the saturated cycle
is not known, an iterative procedure is necessary. The
average value of Z3 is then determined using Equation
5.29 and two saturated cyclic hysteresis loops at high
and low strain rates. The remaining parameter, m, is
determined using Equation 5.26 and performing nonlinear
regression of monotonic and cyclic test data. The

various parameters are listed in Table 6.1.

Static Thermal Recovery

Almost all the unified constitutive models have
static thermal recovery terms added in the evolution
equations. This can be done in the model proposed,
using R1 and R2 in Equations 4.13 and 5.17. These
static thermal recovery terms purportedly model
thermally activated processes, such as dislocation
climb and cross slip, and are active only for 1long
duration tests, such as creep and stress relaxation.
The origin of such an approach can be traced to Orowan

and Bailey [52,53).
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5.6

In general, functional forms for the static
thermal recovery term R] in the back stress equation
(5.17) can be determined, based on the creep tests and
low strain rate tensile tests. However, in the
proposed model, the predictions are very good for creep
and stress relaxation tests at 982°C without the use of
R1. Thus, it is concluded that the necessary recovery
effects, at least at 982°C, are already included in the
dynamic recovery term in Equation 5.17.

The drag stress variation models cyclic softening
or hardening and is physically related to the
mechanical changes occurring to the precipitates.
These changes are irreversible and cannot be recovered.
Thus, it is not expected that a recovery term Rz in

Equation 4.13 should be necessary.

Application to Cyclic Load Histories

The constitutive equations (5.6), (5.24), (5.25),
and (4.13) have been programmed to <calculate the
material behavior for different load histories. The
program performs numerical jntegration of these
equations using a forward Euler scheme. One of the
difficulties 1involved 1in wusing wunified constitutive
models is that they require a large number of time

steps for many loading histories, with each time step
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involving a number of diterations. This makes
predictions difficult when a large number of cycles are
involved. Many tests in the experimental program
described in Chapter 3 are under cyclic conditions.
Recall, these tests were performed in cyclic blocks,
involving a series of strain ranges, as shown in Figure
3.3. To predict the response of the model during such
a test would involve integrating the <constitutive
equations cycle-by-cycle for the entire test. This
approach was abandoned as being too expensive.

Instead a new scheme is proposed which limits the
actual integration to only those cycles where
significant transient behavior is expected. In the
beginning of each cyclic block integration is performed
for a few cycles until the back stress hysteresis 1loop
stabilizes. The inelastic work from the latest cycle
is then extrapolated to the final cycle of that
particular block. The drag stress at the beginning of
the 1last cycle is calculated using the extrapolated
value of the i{nelastic work and Equation 5.26.
Complete integration is then performed for this final
cycle of the current block and continues to the next
block until the transients again stabilize. The same
process is then repeated for the entire test sequence.
This scheme 1is 1illustrated in Figures 5.3, 5.4, and

5.5. Figure 5.3 shows the strain history imposed. Two
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5.7

transient 1loops are taken in each block. Figure 5.4
shows the behavior of the drag stress wusing the
extrapolation scheme. Figure 5.5 shows the nested
hysteresis loops calculated for the three cyclic
blocks.

This scheme was used for making model predictions
for all the unjaxial and multiaxial tests.
Conceptually, this scheme can be made more
sophisticated, based on some well chosen criteria for
extrapolating the state variables. This can provide a
powerful tool for analyzing long time load histories

with minimal amount of computation.

Analysis of Rene” 80 Behavior at 982°C

In this section, some typical examples are given
comparing the predictions of the proposed unified model
to Rene” 80 experimental results at 982°C. The material
parameters used for the predictions are given in Table
6.1.

The tensile test results and model predictions are
shown in Figure 5.6. The model 1is seen to represent
the strain rate sensitivity very well. The saturated
values of the stresses and the shapes of the stress

strain curves are reasonably well predicted. Recall
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that some of these results were used in calculating the
material parameters for the model.

Figure 5.7 shows the results of the creep analysis
at two different stress levels. The agreement between
the model and test data is very good. The creep data
was not included in the analyses for material constant
evaluation.

The cyclic analyses are shown in Figures 5.8-5.12.
Figures 5.8 and 5.9 are the cyclic saturated loops at
the high (.2 M-1) and 1ow (.002 M-1) strain rates,
respectively. These two loops had been wused 1in
evaluating Z; and m in Equation 4.13. The predictions
were made using the extrapolation scheme presented in
the previous section. The correlation between the
model and the test data appears good.

The rest of the cyclic test results shown are pure
predictions. That is, none of these data were used in
constant evaluation and the predictions are based on
the extrapolation scheme. Figure 5.10 shows a cyclic
test with a compressive mean strain. Notice that the
mean stress relaxes as cycling progresses. The model
also predicts exactly the same transient behavior. The
first two cycles are shown 1in Figure 5.10a. A
saturated cycle (cycle number 78) is shown in Figure
5.10b. The agreement between the model and test data
is excellent. This is a low strain rate (.002 M-1)
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test. The results are not as good for a similar test
at high strain rate (.2 M-1), as shown in Figure 5.11.

Figure 5.12 shows the results for a 12 second
compressive strain hold cyclic test. The amount of
stress relaxation predicted by the model is 1in good
agreement with the test data. The hysteresis loop is
also predicted very well.

In summary, the model is seen to be capable of
representing well the rate dependent Rene” 80 behavior
at 982°C under monotonic, cyclic, and creep 1loading
conditions. In particular, the mean stress transient
behavior is predicted very well. This is expected to
enhance the low cycle fatigue life analyses. The creep
and cyclic stress relaxation predictions are very

encouraging.
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CHAPTER 6
NONISOTHERMAL LOADING CONDITIONS

The ~constitutive modeling discussed in the
previous chapters was directed toward identifying the
physical basis of the model and developing the mathe-
matical structure. Procedures were also developed to
evaluate the various material parameters. Further, the
capabilities of the model were verified for monotonic,
cyclic and creep loading histories for Rene” 80 at
982°C. In actual service, however, blades and vanes
are subjected to a variety of temperatures.

Extending the model to other temperatures fis
challenging because the 1low temperature behavior of
Rene 80 1is significantly different from its high
temperature behavior. Recall, the major differences
are in strain rate sensitivity (Figures 3.5 and 3.6),
cyclic softening (Figures 3.9 and 3.11) and ductility
(Figure 3.4). The objective of this phase of the
research is to extend the new model to various other
temperatures. It will be shown that this can be done
essentially within the same mathematical framework of
the model developed in Chapter 5. The isothermal form
for the constitutive model 1is summarized below for

convenience:
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2 (S::-0..)
tile0 exp -[%(gé;)z"]—li—‘i— (5.6)

! vKz
_ 6 I
Qi35 BS54 * R0 (5.24)
Q.
s I o o 1 ij ol
nij-fleij-f,-YI EeRigs (5.25)
Y=m(Z,-2)R1-R,, (4.13)

where, K2=%(Sij-2i3)(Sij-Rij), éi=/% éﬁjégj and,

x= 29 *
®= Fpax °

In nonisothermal loading conditions, it is
expected that the model parameters are temperature
dependent; i.e., D(T), A(T), n(T), etc. In addition,
the saturated values for the back stress, Qpax, and
the drag stress, Z, are also dependent on the temp-
erature. The temperature dependence can be estimated
from experimental data at various constant temperatures
if temperature rate effects are neglected. 1In addition
to 982°C (1800°F), experimental data for Rene” 80 is
available at 871°C (1600°F) and 760°C (1400°F).

* The formulation for the steady state value, X, of
the back stress is modified, as shown later in this
chapter.
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6.1

A limited amount of data is also available at 1093°C
(2000°F), 649°C (1200°F) and 538°C (1000°F). Methods
for evaluating the material parameters were discussed
in detail in Chapters 4 and 5. In general, the same
procedures were used at the other temperatures.
However, at 760°C (1400°F) and below there are some
differences which will be discussed 1later in this

chapter.

Tensile Response at Various Temperatures

As discussed in Chapters 4 and 5, most of the
material parameters 1in the constitutive model can be
evaluated from the experimentally measured tensile
response of the material. A number of monotonic
tensile tests have been performed for Rene” 80 at
various temperatures and strain rates as shown in Table
3.3. The results of these tests clearly show the
differences in the material behavior at the various
temperatures.

The major result of the monotonic tensile tests is
that the strain rate sensitivity of Rene” 80 is seen to
be strongly dependent upon the temperature. As shown
in Figures 3.5 and 3.6, at high temperature (982°C) the
strain rate sensitivity s high; whereas, at low

temperature (538°C) there is no strain rate
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sensitivity. It was seen that at 871°C, Rene” 80
behavior is strain rate dependent, although to a
smaller extent than at 982°C. The results at 760°C are
mixed. There 1is more scatter in data at this
temperature and no strain rate sensitivity is evident.
Other investigators have also reported considerable
scatter in experimental results of Rene” 80 at 760°C
[311. Recall, the ductility of Rene” 80 is strongly
dependent on temperature, as shown in Figure 3.4. The
ductility is poor at 871°C and 760°C and the tensile
tests at these temperatures failed at 1low values of
strain before saturation was reached. The saturated
values of tensile stress at 871°C and 760°C were deter-
mined by extrapolation.

The saturated value of stress in the tensile tests
is plotted as a function of temperature in Figure 6.1
for three strain rates, .2 M-1, .02 M-1, and .002 M-1.
The saturated values of stress are ordered with respect
to the strain rate at all temperatures except 760°C.
The saturated tensile stress increases with decreasing
temperature, reaching a plateau at 760°C and below.
The reduction in strain rate sensitivity at lower temp-

eratures is also evident in Figure 6.1.

144




6.2

Evaluation of Material Parameters at Low Temperatures

A systematic method of evaluating the various
material parameters in unified models was outlined in
Chapter 4. This procedure was later used for Rene” 80
at 982°C, as discussed in Chapter 5. At 871°C Rene” 80
behavior 1is generally similar to that at 982°C and the
same material parameter evaluation procedure was used.
The saturated value for the back stress, Qpax, the
initial value of the drag stress, Z,, and the exponent
n in the flow equation (5.10) were determined from the
saturated condition of the three monotonic tensile
tests. The scaling parameter D was chosen to be ten
per second. Then the history of the back stress, Q,
was calculated for the entire tensile test by inverting
the flow equation (5.10) and assuming Z=Z,=constant.
The various parameters in the back stress evolution
equation were then calculated exactly the same way as
for 982°C. The drag stress equation parameters were
also calculated exactly the same way, using two
saturated cyclic hysteresis loops.

However, at 760°C and lower, the lack of strain
rate sensitivity, ductility and consequent data
scatter, required some modifications in the constant
evaluation scheme. First, the saturated value of

the back stress, Qpax, cannot be evaluated using the
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same technique. The values of Qpax at 982°C and 871°C
are plotted in Figure 6.1. It 1is seen that the
effective stress (o-R) increases at lower temperatures;
i.e., a larger value of the effective stress (o-2) is
required in order to produce the same inelastic strain
rate. It is assumed that this trend continues at
temperatures lower than 871°C. Thus, the Rfpax versus
temperature curve is extrapolated up to 760°C. Since
the saturated value of the stress reaches a plateau at
760°C, it is reasonable to expect that the saturated
back stress, 2max» shows a similar behavior. This has
been confirmed using experimental data from the three
tensile tests at 538°C. Thus, an approximate curve is
constructed for the variation of Qpax with temperature.
This is also shown in Figure 6.1. The values of Qpax
at 760°C and below are taken from this curve.

The unijaxial form of the flow equation (5.10) at

the saturated condition 1in a tensile test can be

written as
]n( 2D )=A( ZO )Zn. (6-1)
E: LACTE .

In the above equation, the subscript s indicates

saturation. Notice that e€glz¢, the applied strain
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6.3

rate, which ranged from .002 M-l to .2 M-1. At 760°c,
os is essentially strain rate independent and Qpax is
found from Figure 6.1. The initial value of the drag
stress, Zgp, is considered temperature independent and
known. Then, the parameters D, A, and n are determined
such that predicted values of gg using Equation 6.1 for
strain rates from .002 M-l to .2 M-l are within the
scatter of experimental results. Once these flow
equation material parameters are known, the back stress
evolution equation parameters f}; and G/E can be
determined, using the same procedure as for 982°C and
871ecC. The various material parameters at 760°C are
listed in Table 6.1. Their variation with temperature
is shown in Figures 6.2-6.5. The average elastic
modulus from the uniaxial tests at several temperatures

is shown in Figure 6.6.

Calculated Tensile Response

The monotonic tensile response of Rene” 80 has
been calculated at 871°C, 760°C, and 538°C using the
material parameters shown in Table 6.1. The
calculations are for three strain rates, .2 M-1l, .02
M-1 and .002 M-1, The results are compared with
experimental data in Figures 6.7, 6.8, and 6.9.
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At 871°C, the strain rate dependent behavior of
Rene” 80 is modeled very well, as evidenced by the very
good agreement between the calculated response and the
test data. This is to be expected, since the material
parameters were based on these data. However, the
applicability of the model at 871°C 1is verified.
Figures 6.8 and 6.9 show similar results at 760°C and
538¢C. The agreement between the model and test data
is again good. Notice the 1large difference in the
strain rate sensitivity at 871°C and 538°C. The model
predicts a small amount of strain rate sensitivity at
760°C. The results are, however, in close agreement
with test data. This is a very significant result
because it demonstrates that the unified constitutive
equations developed here can model strain rate
independent behavior at high temperatures. This
essentjally verifies the temperature capabilities of
the model and constitutes a major step in nonisothermal
modeling.

One monotonic tensile test was performed at 649°C
(1200°F) at a strain rate of .02 M-1l. The tensile
response of this test was calculated based on
interpolated values of the various material parameters.
The results are shown in Figure 6.10. The agreement

between the model and the test results {is excellent.
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6.4

This verifies that interpolation of the material
parameters is possible at the intermediate temperatures.
This indicates that the thermomechanical cyclic

predictive capability of the model may be good.

The Cyclic Response of Rene” 80

Gas turbine engine components can experience
cyclic loads during service. Thus, constitutive
modeling of cyclic material behavior is very important.
A large number of cyclic tests have been performed on
Rene” 80 at 982°C, 871°C and 760°C. In Chapter 5, the
cyclic response of the proposed constitutive model at
982°C was found to be in very good agreement with
experimental data for a wide variety of cyclic tests.
This section describes similar results for 871°C and
760°C.

At 871°C, cyclic softening behavior in the first
few cycles was observed, similar to 982°C. The
softening is isotropic in nature and is modeled using
the drag stress (Equation 4.13) which decreases as a
function of the accumulated 1inelastic work. The
material parameters related to the cyclic softening
model were determined wusing cyclically saturated
hysteresis 1loops, as described previously, and are

recorded in Table 6.1. At 871°C, the rate of cyclic
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softening 1is much 1less than at 982° and it is not
certain from the test data that cyclic saturation had

been reached for all the tests.

6.4.1 Cyclic Predictions at 871¢

Cyclic behavior predictions have been made for the
various <cyclic tests at 871° using the cyclic
integration scheme described in Section 5.6. Figure
6.11 shows the results for a fully reversed, high
strain rate (.2 M-1l) cyclic test. Loops are shown for
cycles 64 and 116. The latter is near the end of the
test and is considered as the saturated hysteresis loop
for material parameter evaluation.

The model appears to predict the cyclic behavior
very well at this strain rate. The saturated
hysteresis loop for a similar test at a low strain rate
(.002 M-1) is shown in Figure 6.12. The model predicts
less softening, and there is some difference in the
elastic modulus. Notice that the test data shows a
slight tension-compression asymmetry. The stress
relaxation during a 120 second tensile strain hold is
shown in Figure 6.13 for cycle 50 in the test. Next, a
compressive mean strain test (A _=-1) was run to induce
mean stress transient behavior. The first four cycles

of a test at a strain rate of .002 M-1 are shown in
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Figure 6.14a. The compressive mean stress is seen to
relax to a stable value after a few cycles. Figure
6.14b shows the steady state hysteresis loop for cycle
64. The predictions appear good especially considering
that this result is after a number of transients due to

changes in the strain range.

6.4.2 Cyclic Predictions at 760°C

In general, all the cyclic tests at 760°C showed
very little 1inelasticity even for the largest strain
ranges. Since there is no cyclic softening at this
temperature, the cyclic predictions were made using a
constant drag stress (Z=Z,). Figure 6.15 shows cycle
114 of a fully reversed, high strain rate (.2 M-1)
test. The model predicts a larger inelastic strain
range; however, the experimental result (ael=.0005) is
near the resolution of the extensometer. The tensile
peak stress is predicted well but not the compressive
peak. Notice that there is a tension-compression
asymmetry in the experimental results. Figure 6.16
shows cycle 54 of a fully reversed cyclic test at .002
M-1. Both the model and test data contain a 1larger
inelastic strain range as compared to the high strain

rate test. Again, the model overpredicts the inelastic
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strain range, and there is also asymmetry in
experimental results.

Figure 6.17a shows the various hysteresis 1loops
predicted by the model for a cyclic test with a tensile
mean strain (A_=+1) at .2 M-1. Notice that the peak
stresses decrease during cycling, and the mean stress
decreases. The 1loops shown in this figure represent
the entire history of 183 cycles. Notice also the
influence of reversed inelastic flow on the subsequent
cycles. The predicted results are compared with test
data in Figures 6.17b, 6.17c and 6.17d for various
cycles. Even though cycle 45 (Figure 6.17b) and cycle
85 (Figure 6.17d) have the same strain range, the
stress ranges are very different due to the inelastic
strain history and mean stress relaxation. Figure
6.17c shows the hysteresis loop for cycle 63 which has
a higher strain range and, hence, shows a larger, but
still very small, inelastic strain.

Figure 6.18 shows the results for a 120 second
tensile strain hold cyclic test. It is significant to
note that the test result shows some stress relaxation,
even though the tensile behavior at 760°C is rate
independent. Cycle 20 (Figure 6.18a) is almost elastic
with a small amount of stress relaxation. Cycle 94 has

a larger strain range and shows larger inelastic
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6.5

strains and stress relaxation. The model appears to
predict the amount of stress relaxation reasonably
well. In general, there is a significant difference in
the elastic moduli of the various test specimens. An

average elastic modulus was used for all calculations.

Creep Response at 871°C and 760°C

Recall, Rene” 80 displayed strain rate independent
tensile behavior at 760°C and below. However, as shown
in Figure 6.18, stress relaxation was observed during a
120 second tensile strain hold. It has also been
observed that at high values of stress, creep also
occurs at 760°C. The unified model could predict
reasonably well the time dependent response at 982°C
and strain rate independent tensile behavior and short
time stress relaxation at 760°C. The creep response is
a long time behavior, and it was found that it could
not be predicted well. This led to a further
investigation of the monotonic and creep response
results.

The saturated values of the stress and strain
rates in the tensile and creep tests are shown in
Figure 6.19. At 982°C, the monotonic and creep results
are consistent; however, this is not the case at 871°C

and 760°C. At 871°C, strain rate sensivity is present
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in both the short time (tensile) response and the long
time (creep) response. However, there 1is a distinct
discontinuity in the curve between short time and long
time results. At 760°C, there is no rate dependence in
the tensile data, but creep is present.

Static thermal recovery effects in the long time
response of materials have traditionally been modeled
using terms 1like Rjj in Equation 5.25. A number of
attempts at this showed that such static recovery terms
in the proposed model are not effective in modeling
creep behavior. An examination of the evolution
equation (5.17) for the back stress shows that it
approaches a steady state value, Qg, during creep and
this value is not the same as Qpax, determined in the
high rate tensile tests. Thus, for 1long time creep
response, the steady state back stress decreases as
shown in Figure 6.20 for creep at 760°C. Physically,
this could correspond to dislocation pileups decreasing
through a dislocation climb process over long periods
of time.

The back stress recovery can then be modeled as

= -A(%;)“(ns-nsat), (6.2)

where 2¢(0)=Qpax- In Equation 6.2, Qg is the steady
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state value of the back stress; Qgat 1s the saturated
value of the back stress observed in uniaxial monotonic
and creep tests. The value of Qgat is expressed as a
function of the effective stress, as shown in Figure
6.20. A lower bound is imposed on the minimum value of
flsat to represent the minimum value of the back stress.
Modeling long time recovery effects using the saturated
value of back stress has been suggested by other
investigators also [54].

The results of wusing the back stress recovery
equation (6.2) appear to give good results for Rene” 80
at 760°C and 871°C. Figure 6.21 shows the results for
the three creep tests at 760°C. Both the high stress
and low stress creep results appear good; whereas, the
intermediate stress case is not predicted quite as
well. Similar results are shown in Figure 6.22 for the
three creep tests at 871°C. It was found that the
creep predictions at the lower temperatures are very
sensitive to the saturated value of the back stress,
Qs .

In summary, it is seen that the proposed
constitutive model 1is applicable for a range of
temperatures. It is able to model the strain rate
sensivity difference at high and low temperatures. The

monotonic, cyclic, and creep predictions are in good
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agreement with experimental data at 982°C, 871°C and
760°C. A new form of recovery model is proposed which
predicts 1low temperature <creep behavior relatively

well.
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TABLE 6.1

MATERIAL CONSTANTS FOR PROPOSED MODEL (RENE~ 80)

Constant
n

D sec-1

982°C
(1800°F)

.2418
1.0
1.0

2.88x104

.3005
4772
10.3

4.526x10-4

8.458
91.8
188 .4
283
.103
5.1x104
4.0x104

TEMPERATURE
(1600%) (1400 F)
.3005 .6
10.0 10,000
1.0 .0609
4.65x104 4.97x104%
.2926 .4944
.4566 .5018
-29.5 -28.3
2.126x10-3 7.625x10-7
3.0609 13.7
91.8 229.6
256 367.4
384 551
.0126 0
5.1x104 5.1x104
2.1x104 2.1x104
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538 °C
(1000°F)

1.0
10,000
.000916
4.86x104
.5058
0
0
0
0
367.4
367.4
551
0
5.1x104

2.1x104



CHAPTER 7
MODELING MULTIAXIAL RESPONSE CHARACTERISTICS

Almost all the constitutive models that have been
developed to date are based on wuniaxial experimental
results. This is due to a lack of an adequate
multiaxial behavior experimental data Dbase. The
typical approach has been to extend the uniaxial model
to multiaxial cases based on equivalent stresses and
strains [55] and the assumption of plastic
incompressibility. However, such approaches can lead
to significant errors for some types of materials and
multiaxial loading conditions [56].

In the model proposed here the material functions
in the evolution equation for the back stress were
considered as fourth order tensors. This form of the
equation is more general than the uniaxial form. For
the case of an incompressible isotropic material the
constitutive parameters reduced to scalar functions
that can be determined from the uniaxial response. The
resulting multiaxial constitutive equations (4.13, 5.6,
5.24, and b5.25) are fairly simple. Recall, the
uniaxial response of the model was verified for a
number of experiments at several temperatures. In this

chapter the multiaxial capabilities of the model will
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7.1

be described in detail. The multiaxial Tloading
conditions and the associated material phenomena are

briefly discussed first.

Multiaxial Material Behavior

The multiaxial material response poses major
challenges both experimentally and theoretically. Most
of the multiaxiality studies to date have been
concerned with the analysis of low cycle fatigue life
(57-61) and the development of appropriate failure
criteria. The multiaxiality effects on fatigue 1life
arise mainly due their impact on the cyclic inelastic
behavior. Multiaxial predictions are also important
for the dimensional stability of structures such as
blades and vanes. Thus, it is important that
constitutive equations be able to model the cyclic
inelastic response under multiaxial loading conditions.

There are two basic types of multiaxial loading
conditions: proportional and nonproportional. Under
conditions of strain control, proportional 1loading is

defined by

eij(t)=F(t).Cyj, (7.1)

where Cjj is independent of time and F(t) is a scalar
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function of time. Equation 7.1 implies that all the
components of the strain tensor «ejj vary propor-
tionately in time at all 1locations in a structure.
Proportionality can also be defined for the stress
tensor, ojj [571. In general, these two definitions
are not equivalent when inelastic strains are involved.
In some high temperature applications such as blades
and vanes of gas turbines, approximately proportional
loading conditions prevail. However, in most
applications loading conditions are usually
nonproportional.

The effects of the proportionality or
nonproportionality of the multiaxial loading are most
significant 1in the cyclic behavior of the material.
Usually it is assumed that materials which cyclically
harden or soften attain a unique final state. Based on
this assumption the ~cyclic transient behavior is
neglected and only the stable behavior is modeled,
using a cyclic stress strain curve [62-64]. These
approaches were proposed based mostly on uniaxial
experiments. However, it has been experimentally shown
that, under multiaxial loading conditions, the
assumption of a unique cyclically stable state is valid
only for proportional 1loading [65-67]. For nonpro-

portional loading conditions, a number of cyclically
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hardening materials are found to attain cyclically
stable states which are harder than that attained under
proportional loading conditions ([56,60,65,68,69]. How-
ever, there is very little experimental data available
under nonproportional multiaxial loading conditions for
cyclically softening materials. It has been suggested
that cyclically softening metals may soften 1less or
even harden under nonproportional loading [70].

The additional hardening observed for
nonproportional 1loading conditions has generally been
attributed to the differences observed in the
deformation mechanisms. For proportional strain
cycling, Equation 7.1, the principal directions of the
applied strain are constant. In this case it is
expected that slip and dislocation interactions are
limited to a few, favorably oriented planes in each
grain during the entire loading cycle. However, for
nonproportional 1loading the principal directions and
the maximum shear planes are not constant. For
example, in 90 degree out of phase tension/torsion
cycles, the maximum shear plane continuously sweeps
through all the planes. Similarly, dislocation
interaction also occurs on all the planes under
nonproportional cycling conditions. This increased
level of dislocation interactions is largely

responsible for the additional hardening. 1In addition,
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7.2

deformation induced material transformations have also
been reported for some materials [71]. These general
implications of observed differences in material
behavior for proportional and nonproportional loading
cycles have not been established for Rene” 80.
Constitutive modeling must be guided by
experimental results for both proportional and nonpro-
portional multiaxial Tloading cycles. The following
sections describe the modeling of Rene” 80 at 982°C and
871°C at two strain rates, .02 M-1 and .002 M-1l. Pure
torsion results are also included for comparisons with
proportional and nonproportional tension/torsion
results. The constitutive model developed in Chapter 5
is used to predict the response. The predictions are
based on Equations (4.13, 5.6, 5.24, and 5.25) with no
additional terms for nonproportional loading. The

material parameters used are those shown in Table 6.1.

Pure Cyclic Shear Response

The proposed constitutive ﬁode] was developed in
fully three dimensional form. The material parameters
in the model were evaluated based on unifaxial
experiments as discussed previously. Another

verification of the constitutive model can be obtained
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by predicting the experimental results from pure

torsion tests. For pure shear loading

0 €12 0 0 T 0
0o o0f, o 0 0],
e I
0 €12 0 0 912 0
R Ri5=[212 0 0 (7.2)
0 0 ’ 0 0 o
and

2 o .
K,=(t-Q,,) and e:=§§e}z .

The tensorial shear strain, €12, (half of the engi-
neering shear strain y) s used throughout this study.
Using Equation 7.2 the constitutive equations (4.13,
5.6, 5.24, and 5.25) for pure torsion become

. (r-012)
t11= D exp|-B—L—)2" o] (7.3)
v3(1-0,2) 12
R12=8t+0, (7.4)
o ] e I 912 2 |
nxz=f1€xz'/§fxn €12 (7.5)
max
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7=2m(Z1-2)1é14 (7.6)

Equation 7.5 predicts that for monotonically
increasing torsional load, saturation occurs when

Q‘2=;%nmax’ where Qmax js the saturated value of the

back stress determined from uniaxial tensile tests.
This has been verified in the computer program used to
make the analytical predictions, wusing the same
equivalent strain rate for tensile and torsional
loading.

Pure cyclic torsion tests were performed using
cyclic block sequences with variable strain ranges,
similar to the uniaxial cyclic tests shown in Figure
3.3. Two strain rates, .02 M-l and .002 M-1, and two
temperatures, 982°C and 871°C, were used. In all the
torsion tests the cyclic hysteresis loops show a small
bjas in the negative loading direction. This asymmetry
in the stress strain behavior remained almost constant
throughout the test. It is possible that this may be
related to the starting conditions in a test (the data
is not clear). It has also been noticed that a small
amount of axial stress develops for the pure torsion
tests. The exact cause of this axial stress and
whether it has any relationship to the asymmetry in the

hysteresis loops cannot be conclusively determined from
182



the existing data. A possible way of modeling the
asymmetric torsional behavior will be shown later in
this section.

Figures 7.1 and 7.2 show comparisons of the
predicted and experimental behavior in cyclic torsion
at 982°C at .02 M-1 and .002 M-l. The agreement
between the model and the test data is very good.
Recall thét all the material parameters had been
determined from only the uniaxial tests. The cyclic
integration scheme outlined in Chapter 5 was used to
avoid cycle-by-cycle calculations. Notice the bias in
the test data; whereas, the model predicts symmetric
behavior.

The bias can be modeled in the back stress
evolution equation (5.25) by introducing an initial

value for the back stress, a1j°i j.e.,

WP Sl (94 5-a;0) ei-R (7.7)
Big~lreqjm g RigTaijiee T j" .

Since the bias in stress remains approximately constant
aij® may be taken as a constant tensor. Its value can
be determined for torsion cases using Equation 7.3

which may be rewritten as
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. -1
|&11]
(T-le)='/'—§_ - %“‘(-D—) ﬁ (7.8)

Since e12! is found to be symmetric, the asymmetry in Tt
arises due to an asymmetry in Q172. The value of ajj°
can be found from the magnitude of the difference in
the values of t at the positive and negative peak

points. For Rene ” 80 at 982 <,

0 -2.5 -2.5

o_
aij‘ '2.5 0 -2.5
-205 "'2.5 0

The model predictions using Equation 7.7 are shown in
Figure 7.3. Notice that both the hysteresis loops are
asymmetrical. This demonstrates that the proposed
model can be easily adapted to dinclude asymmetric
behavior. However, implementation will be made only
after the exact causes of the asymmetric behavior are
understood.

Figures 7.4 and 7.5 show the results for pure
torsion analyses and tests at 871°C at strain rates of
.002 M-1 and .02 M-1 respectively. For a large number
of cycles (Figure 7.5b) the model predicts more
softening than is seen in the test data. Considering
the various factors involved in the analysis, such as
uniaxial test based material parameters, extrapolated

cyclic integrations, variable «cyclic block strain
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.3

ranges, etc, the results for all the torsion analyses

are remarkably good.

Proportional Cyé]ic Loading

The 1in phase tension/torsion 1loading condition,
shown 1in Figure 3.13a, is a proportional multiaxial
loading case since ¢12=Ce]] where C 1is a constant
throughout the test. This is different from the cases
considered so far because this involves simultaneous
loading in two modes, tension and torsion, at two
different constant strain rates. These tests were also
performed 1in cyclic blocks with different strain
ranges. The response predicted by the model was
calculated as before but with independent control of
axial and shear strains.

Figures 7.6-7.8 show the comparisons of the model
predictions with experimental data for an in phase
tension/torsion cyclic test at 982°C at a shear strain
rate of .002 M-1, Both the axjal response and shear
response are shown at three points in the cyclic
history. Clearly, there is very good agreement between
the response predicted by the model and the
experimental results. Notice the negative bias in the
experimental data. Part of this bias is due to a small

asymmetry in the strain control limits.
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7.4

Figures 7.9-7.11 show the results for a similar in
phase tension/torsion test at 871°C. 1In this case also
the model predictions are 1in agreement with the
experimental results. Towards the end of the
experiment (Figure 7.11) the model appears to
overpredict cyclic softening. However, most of the
discrepancies appear related to the negative bias of
the experimentally determined stress response. Based
on the results in this section, it 1is concluded that
the multiaxial modeling capability of the proposed

model for proportional loading histories is good.

Multiaxial Nonproportional Loading Cyclic Response

The proportional 1loading conditions discussed in
the previous section are encountered in certain high
temperature applications and represent an important
class of problems. However, the most general case of
multiaxial loading 1is nonproportional, which may
involve additional hardening or softening as discussed
previously. Two types of nonproportional loading
histories have been investigated to study the
capabilities of the proposed model: multiple in phase
tension/torsion loading and sinusoidal 90 degree out of

phase loading.
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7.4.1 Multiple In Phase Tension/Torsion Cyclic Loading

This test involves a series of in phase tension/
torsion cycles as shown in Figure 3.13b. Each segment
of the test, such as AA, is proportional individually
and the planes of maximum shear strain remain fixed.
Most of the microscopic deformation related phenomena
are thus 1limited ¢to only a few planes. After
stabilization in each segment the proportionality
factor between the axial and shear strains is changed,
such as path BB, and the maximum shear strain planes
are different for the new path. Thus, a sequence of
variable proportional 1loading paths can be wused to
construct a nonproportional 1loading history. Such a
history has been shown to produce the additional
hardening phenomenon observed in other materials
[66,70].

Multiple in phase nonproportional loading history
tests have been performed on Rene” 80 at 982°C (Figure
3.13b), including pure shear (path CC) and pure axial
(path EE) cycles. In this test each path had a
different strain rate since the cyclic period was fixed
at 360 seconds throughout the entire test. The strain
ranges for the varfous paths are such that the
octahedral shear strain is approximately constant at

the peak points of each cycle.
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Figures 7.12-7.15 show the predicted and measured
cyclic response at the end of each segment of the
history. Figure 7.12, which shows the results of the
first and last segments of the test, summarizes the
objective of this test. The strain paths AA, the first
segment, and FF, the 1last segment, are identical.
However, the specimen is subjected to a nonproportional
loading history between these two segments. Figure
7.12a shows that the experimental stress strain
response ‘in shear for the paths AA and FF are exactly
the same, 1indicating that there are no additional
effects due to nonproportional loading of Rene” 80 at
982°C. The model prediction is in good agreement with
the test data. The axial response experimental data
shows some scatter; however, paths AA and FF are close
to being pure torsion, and the axial stress and strain
measurements are subject to substantial error.

Figures 7.13 and 7.14 show the results for strain
paths BB and DD. There appears to be some scatter in
the measured response, which is probably related to the
biaxial extensometer. The asymmetry of the measured
hysteresis loops 1is again evident. Figure 7.15 shows
the response for segment CC, which is pure torsion, and
Figure 7.16 shows the response for the segment €EE,

which is uniaxial.
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The results shown in Figures 7.12-7.16 are
encouraging for two reasons. First, Rene” 80 does not
appear to exhibit additional hardening or softening for
nonproportional loading at high temperatures. This has
been experimentally verified at 982°C (Figure 7.12) as
well as at 871°C. The second important consequence of
these results is that the multiaxial capability of the
model appears good for this material. The test
described in this section is perhaps the most
complicated one in this program, since it involves both

nonproportionality and variable strain rates.

7.4.2 Out of Phase Tension/Torsion Cyclic Loading

A typical nonproportional cyclic loading condition

that 1is wused 1in tension/torsion experiments can be

represented by

€11=a;sinwt (7.9)
and
€1273,sin(wt-¢). (7.10)

Sinusoidal wave forms are used for the axial strain e1j
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and shear strain €12 with amplitudes of aj; and aj,
respectively. w is the frequency of the cycle, and ¢
is the phase angle between the axial and torsional
strains. When ¢=0 the loading is exactly in phase and
proportional, and when ¢=n/2 the loading is exactly out
of phase. A value of ¢ other than zero corresponds to
nonproportional loading. In the nonproportional
loading represented by Equations 7.9 and 7.10, the
principal strain directions and the maximum shear
strain directions continuously sweep through all the
material planes. Thus, hardening or softening is
distributed throughout all the material planes which
could result in additional hardening, as has been
reported for some materials [72,73). The angle between
the 1inelastic strain rate vector and the deviatoric
stress vector also varies continuously, as shown in
Reference [72].

The response of Rene” 80 at 982°C for 90 degree
(¢=n/2) out of phase sinusoidal tension/torsion strain
cycles has been analyzed using the new constitutive
model, and the results are shown in Figures 7.17 and
7.18. The axfal and shear strain amplitudes in
Equations 7.9 and 7.10 were chosen such that the
octahedral shear strain remained constant throughout

the «cycle. Note in Figure 7.17 that the stress
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response tends to stabilize inside an ellipse. Recall
that Rene’ 80 cyclically softens at 932°c under high
strain rates. For cyclically hardening materials the
stress response tends to stabilize on the outside of an
ellipse as shown in References [72,73].

It is significant to note that the proposed
constitutive model predicts a phase angle between the
inelastic strain rate vector and the deviatoric stress
vector. This 1is shown 1in Figure 7.18. This phase
angle, 9, is calculated as

eleg
-1

b=cos™! —~—o. (7.11
BN )

It is observed that © varies during a cycle. Its
response stabilizes after a transient period, as seen
in Figure 7.18. The phase angle, 9, has been
experimentally measured for Hastelloy-X at room
temperature and is shown in Figure 7.19 (271, The
variation of ® shown in Figure 7.18 is in qualitative
agreement with the measured results for Hastelloy-X.

The axial and shear hysteresis 1loops for the 90
degree out of phase cyclic loading condition are shown
in Figure 7.20. Notice the cyclic softening that is

evident in these hysteresis loops. The general shapes
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of the axial and shear hysteresis 1loops are in good
qualitative agreement with those reported for other

materials [73].

207



400

René 80
982°¢
=
& &
=
(7]
(7]
Wl
oo
-
(7]
-
a8
HN-
> 1
(o
(=]
(=]
-«
] T T T 1
=200 -100 0 100 200

SHERR STRESS (MPR)

Figure 7.17 Predicted Stress Response in 90° Out of Phase
Tension/Torsion

eq
René 80
982°¢
~ ol
c,m
(V8]
(en]
(V8]
o]
(DN
b4
(o
w
(ip]
T ol
I o
a.
©.200 -100 o 100 200

SHERR STRESS (MPR)

Figure 7.18 Predicted Phase Angle Between Inelastic Strain
Rate Vector and Deviatoric Stress Vector

208




80 T T I m T
Hastelloy-X (R.T.)
90° Qut-of-Phase
Tension and Torsion
60 - -
Experimental Scatter
Band
W
5 a0 -
o
2
<C
[¥]
4
\\\\\\\“-.-_____——"///(TNa1ker's
Theory
O Zf —
Bodner-Partom's Theory
-20 1 l | l |

-600 -400 -200 0 200 400 600
Shear Stress, MPa

Figure 7.19 Phase Angle Between Inelastic Strain Rate

and Deviatoric Stress Vectors for Hastelloy-X
(From References [27] and [72])

209



200 400
1 h h

'l

AXIAL ST%ESS (MPR)

-200

,-400

T T 1
.04 -.02 0 04

.02
AXIAL STRAIN =107
(a) Axial Response

100 200
L 1 J

-100

SHERAR ST%ESS (MPR)

-200

-.02 0 .02 .04
SHEAR STRAIN =10

(b) Shear Response

Figure 7.20 Predicted Cyclic Hysteresis Loops for 90° Out
of Phase Tension/Torsion Sinusoidal Cycles

210

-.04




|

1

8.1

CHAPTER 8
DISCUSSION AND SUMMARY

The objective of this research program was to
develop a set of constitutive equations which can mode]
a wide variety of nonlinear material behavior phenomena
observed in high temperature superalloys. The various
aspects of the material behavior and model development
were discussed 1in detail in the previous chapters.
This chapter briefly summarizes the key elements of the
constitutive model, its capabilities and 1limitations.
Suggestions are made to further extend the capabilities
of the model. Some aspects related to the
implementation of the model in finite element codes are

briefly discussed.

A Review of Important Results

Metallurgists have 1long recognized the existence
of internal stresses in 1inelastically deformed high
temperature metals. There is ample evidence of this in
some types of observed macroscopic behavior as well as
in microscopic observations of the associated
dislocation network. There is clear physical evidence

of a back stress which 4§s directional in nature and
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produces anelastic effects, Bauschinger effects,
negative stress relaxation and non-coaxiality of
inelastic strain rate and deviatoric stress vectors.
There are also a number of isotropic effects related to
dislocation behavior and strengthening mechanisms in a
solid. The proposed constitutive model is physically
based and incorporates both a back stress, 915, and a
drag stress, Z.

The structure of the constitutive equations was
developed on the basis of observed material behavior
for Rene” 80 at 982°C. The experimental data base for
Rene” 80 is extensive and the problem of the material
parameter evaluation from experimental results has been
addressed and demonstrated at several temperatures.
Throughout the entire research, special emphasis has
been placed on modeling and verification of the cyclic
inelastic behavior of the materials that is encountered
in gas turbine engine components. The strain rate
sensitivity, creep and stress relaxation of Rene” 80
are predicted well at 982°C (Figures 5.6, 5.7, and
5.12). The cyclic softening and mean stress relaxation
behavior are also predicted well (Figures 5.8-5.11).

The model was then extended to 871°C, 760°C and
538°C. The material displayed some strain rate sensi-

tivity at 871°C but none at the lower temperatures.
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The material parameters were evaluated at the various
temperatures and it was shown that the model can also
be used in the strain rate independent regime. The
capability of the model at other temperatures was
verified by predicting Rene” 80 behavior at 649°C. It
was shown that in modeling creep behavior the recovery
formulation generally wused 1in unified <constitutive
models did not produce satisfactory results for Rene~”
80. A new form of recovery based on the saturated
value for the back stress was shown to produce much
better results (Figures 6.21 and 6.22). The major
result of this phase of the research 1is that the
unified constitutive model can represent strain rate
dependent behavior at high temperatures and strain rate
independent behavior at low temperatures. The
monotonic tensile, creep and cyclic behavior of Rene-’
80 predicted by the model compared very well with
experimental data at several temperatures.

In general, it is not sufficient to model only the
uniaxial material behavior. Loading conditions in real
world structures are wusually multiaxial. The new
constitutive model was developed in three-dimensional
form. The multiaxial capabilities of the model were
verified using a series of tension/torsion experiments.

Proportional and nonproportional conditions of
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8.2

multiaxial loading were explored and pure torsion
response was also analyzed. In all cases the
predictions of the model were in very good agreement
with the experimental response at the two temperatures
tested, 982°C and 871°C. These results, detailed in
Chapter 7, are very significant because all of the
material parameters in the constitutive model were
determined from uniaxial experiments. It was further
demonstrated that the model predicts the direction of
the inelastic strain rate vector, which is not
coincident with the deviatoric stress vector. The
cyclic variation of the phase angle between the two
vectors predicted by the model appears to have the
right trend. Cyclic softening and saturation under
biaxial conditions was also demonstrated (Figures 7.17
and 7.18). Thus, the multiaxial capabilities of the

new model appear to be very good.

Potential Extensions

There are a few aspects of the new constitutive
model which may be further improved upon, based on some
additional experiments. The current cyclic softening
modeling capability is reasonably good. The material

parameters related to cyclic softening or hardening can
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be determined more accurately if simpler cyclic tests
with constant strain range are used. Next, the stress
response in the torsion and multiaxial experiments is
not symmetric, even for symmetric strain control
conditions. The exact source of this asymmetric
behavior is not clear. It may be due to the 1large
grain size of Rene- 80 in the thin wall test specimens.
The development of a small axial stress during pure
torsion testing may also be related to this result.
Additional experiments are necessary to establish the
exact cause of the asymmetric cyclic behavior. The
constitutive model predicts symmetric stress response
for symmetric strain control; however, a proposed way
to incorporate asymmetric cyclic behavior in
tension/torsion prediction was demonstrated (Figure
7.3). Incorporation of this method in the model is
delayed until the asymmetric behavior is fully
understood.

Another characteristic of the model which warrants
further investigation is the sensitivity during creep.
The steady state creep rate is very sensitive to the
value of the steady state back stress. This is more
evident at 1lower temperature creep. It appears that
the same characteristics of the model which enabled

strain rate independent behavior at 1low temperature
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8.3

give rise to the back stress sensitivity during steady
state creep. Methods to improve this should be

explored.

Modeling Thermomechanical Response

The constitutive model was developed on the basis
of isothermal tests at 982°C, 871°C, 760°C and 538°C.
A form of temperature dependency was introduced through
the variations 1in the material parameters. The
predictions at each of these isothermal temperatures
are quite adequate; however, it is not clear that the
theory will accurately model the response in a thermal
cycle [1,74]. The model is isothermally based and does
not include the thermal history effects and complex
thermomechanical interactions. There 1is only a
parametric dependence on temperature in the current
model. For accurate modeling of TMF behavior, perhaps
both temperature and temperature rate should be
included. It is expected that the drag stress equation
will be affected drastically, since cyclic hardening or
softening behavior is dependent on temperature. The
inelastic strain rate appears to depend on temperature
in the form of an Arrhenius relationship. This 1is

evident from the variation of the parameter D in the
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flow equation. Thus, it appears that the flow equation

may be written as

e

2 ] (Sii-i:)
o I_ A L

where H is an activation energy for inelastic flow, K
is the Boltzmann constant, and D, is a constant.
Further investigation of such temperature dependencies
in the flow and evolution equations may be
advantageous. It is also necessary to study the
differences 1in the physical mechanisms of deformation
between isothermal and nonisothermal histories. For
example, it is known that 1in Rene- 80 the slip
deformation character is distinctly dependent upon
temperature [75]. At 650°C the deformation mode is
planar slip; whereas, at 982°C wavy slip is observed.
In a TMF cycle there will be complex 1interactions
between these deformation modes, and the resulting
nonisothermal material response may be different from
the isothermal response. The TMF model should be able
to model these transitions in microscopic mechanisms of

deformation.
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Finite Element Modeling

Structural analyses of almost all the critical gas
turbine engine components are performed today using
finite element models. The constitutive equations for
material behavior must, therefore, be implemented in
the FEM codes. This is being done as reported in [26]
and [30]. It will then be possible to analyze the
material response in complex geometries, such as
notches and holes.

The unified theories are, in general, a set of
coupled nonlinear differential equations which are
usually numerically stiff to integrate. These may
require the development of special numerical techniques
to make the solutions more efficient, as discussed by
several authors [76-79]. A1l the model predictions
made in this report were using a simple Euler forward
integration scheme. Automatic time step selection
schemes were incorporated but did not result in any
substantial gain 1in efficiency. The wuniaxial and
tension/torsion analyses performed in this study are
much simpler than FEM analyses at a notch root using a
large number of elements. It has been suggested that
simple integration schemes such as the Euler method are
not suitable for analyzing nonproportional loading

[79]. This was found not to be true in this study.
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The numerical stiffness and the efficiency of
numerical integration of the unified theories appear to
be strongly dependent on the specific functional forms
and the materijal parameters. Table 8.1 contains the
computer processing time required for simple monotonic
tensile loading cases at three strain rates. Results
are shown for two unified models, the isotropic Bodner
model wusing only one state varjable and the model
developed in Chapter 5 which has two state variables.
It was found that the new model uses less computer time
and that lower strain rate and 1lower temperature
analyses have less efficiency. Based on the earlier
attempts to model static thermal recovery it has become
clear that the efficiency of numerical integration
appears to be significantly dependent upon the nature
of the static thermal recovery terms. The preliminary
results shown in Table 5.1 appear to confirm this
observation.

The new model has been implemented in a two
dimensional finite element code. Solution times using
this code are comparable to those shown in Table 8.1;
however, the new model is found to require additional
storage space due to the presence of the back stress
tensor. The monotonic and cyclic predictions using the

FEM code are in agreement with the predictions made in
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this report. Further numerical work may become
necessary to make the use of the new model more

efficient in analyzing complicated geometries.

Extension of the Model to Other Materials

A1l the work 1in this report 1is based on the
experimentally observed behavior of Rene” 80, a typical
high temperature superalloy used for blades and vanes
in gas turbine engines. The model has been demonstrated
to work well for this material; however, the model
should be further tested by applying it to other
materials. There are considerable differences in the
microscopic and macroscopic behavior of the various
high temperature superalloys. The strain rate
sensitivity, temperature dependence and cyclic hardening
and softening behavior may be significantly different
from Rene” 80. In fact, there could be some materials
for which the inelastic strain rate vector and the
deviatoric stress vector may be codirectional, in which
case the flow equation (5.6) will be inapplicable.

Perhaps the most significant difference 1in the
behavior of materials is under nonproportional cyclic
loading conditions. It was seen that Rene” 80 did not

exhibit any additional hardening or softening for
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TABLE 8.1

Computer Processing Time * (seconds)

¢ (per minute)

Model Temp. =2 .02 .002
New 982°C 1.75 2.36 4.77
New 871°C 1.78 2.35 4.18
New 760°C 6.67 7.22 23.20

Bodner 982°C 2.94 2.92 10.48

* Monotonic tensile loading
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nonproportional 1loads. This 1is not the general case.
Additional hardening may require some modifications in
the drag stress equation. It is also necessary to
develop some suitable measures of nonproportionality.
Some preliminary work has been done in this area, but a
full development 1is possible only after appropriate

experiments are performed on other materials.
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APPENDIX A
UNIAXIAL FORM OF SOME UNIFIED CONSTITUTIVE MODELS

The subroutines used for the detailed evaluation
of the various constitutive models reported in Chapter
2 used the general three dimensional form of the
models, as reported in the cited references. However,
for the purpose of evaluating the various material
parameters of the models from test data, it is useful
to reduce the general equations to uniaxial, isothermal
form. Such uniaxial forms are listed here for the five
theories examined in Chapter 2.

In these equations, the following notations are

used (uniaxial):

¢l = Inelastic Strain Rate
o = Applied Stress

Q = Back Stress

Z = Drag Stress

R [ |el] dt

1. Walker Model

1 _ lo-a] " (o-2
l o-R

R
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1 =2,- 1ae

The following constants were used for Hastelloy-X at

649°C:

7} = 95631 PSI ng =0 ng = 0
1 = 0% ng = 1.567 PSI ng = 0
n-1 = 0.079 n3 = 781 ny = O*
m = 1.16 ng =0 Qo = -2000 PSI

* 7o = -60,000 PSI and ny = 100 were used for checking
the cyclic softening capability.

2. Krieg, Swearengen and Rohde's Model

c
o1 _ lo-2]"% _o-Q
€ €1 7 |o-2]

2
: .1 2f Cs® 7 g
N =Cse-Cs e - ] m

2= Celel| - colz - 2"

The following constants were used for Aluminum at 43°C:

C; = 6.0 x 10-13 1/sec Cg = 0
C2 = 6.05 C;z =0
C3 = 424 MPa 1o0=10
Cq = 7.8016 x 10-15 Mpa-2 n = 1.0
C5 = 1.15875 x 10-3 Mpa-2
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3. Miller Model

sN
oI _ P o-1|° 0-9
g’ = {se Slnh[ I } Pyl

Hiel- H.Be [Sinh (A1|n|)]“ T%T

te)
"

N
"

o1 A2 s . L
Hz|€ I(Cz+ lﬂl vy z ) -H2C 280 [Sinh (A2Z )]

8 = e VKT for 150.6Tm

{ﬁn_ (1 + 1 0_-69_'")]

= e for T< 0.6Tm

The following constants were used for Hastelloy-X at

649°C:

1, = 8000 psi Co = 50,000 psi

n = 1.598 Ap = 5.9425E-12 psi-3
B = 1.0293 E14 1/sec Q = 104600 Cal./Mole
Hy = 1.0E7 psi Tm = 1588 °K

A1 = 9.305E-4 psi k = 1.9859

Ho = 100
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4, Robinson Model

1.1 pn-1(2 2
€ =75 FT(3 o-Q)F>0, o2>0 and o(-g o-n) >0

or

F>0 and of<0

=0 F<0
or F>0, 02>0 and °(§°‘9)£°

The following constants were used for 2-1/4 Cr-Mo Steel

at 538 °C:

u = 3.61 x 107 R =9.0 x 10-3 ksi/h
n=4 H=1.37 x 10-4 ksi/h
m=7.73 fo = 0.14 ksi

g = 1.5 K = 0.82 ksi

5. Bodner Model

ol 2

2n
-2 ¢ |tz
€ 7 -I—o-]- Doexp [Zn (a) ]
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Z =m(Z,-7) WP- Az,[

The following
649°C:
Do = 104 sec-1

n = 3.2

Z1 = 319 ksi
1o = 232 ksi
Zo = 319 ksi

(z-z,
7,

constants were used

m -3 >
n L] n

4 x 104 sec-!
1.5

2.57 x 104 ksi
2.758
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